Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 3
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Chrétien
2
65 kgStrong
3
66 kgEgholm
5
69 kgMcNulty
7
69 kgAnderson
9
82 kgGarrison
10
76 kgShigemitsu
13
62 kgStites
16
60 kgKron
26
63 kgHulgaard
28
73 kgBjerg
36
78 kgMunday
38
57 kgIrvine
51
75 kgPalamarek
65
61 kgGroube
70
69 kgBeadle
83
64 kgBatt
105
76 kgFouché
108
71 kgFoley
113
72 kg
2
65 kgStrong
3
66 kgEgholm
5
69 kgMcNulty
7
69 kgAnderson
9
82 kgGarrison
10
76 kgShigemitsu
13
62 kgStites
16
60 kgKron
26
63 kgHulgaard
28
73 kgBjerg
36
78 kgMunday
38
57 kgIrvine
51
75 kgPalamarek
65
61 kgGroube
70
69 kgBeadle
83
64 kgBatt
105
76 kgFouché
108
71 kgFoley
113
72 kg
Weight (KG) →
Result →
82
57
2
113
# | Rider | Weight (KG) |
---|---|---|
2 | CHRÉTIEN Charles-Étienne | 65 |
3 | STRONG Hayden | 66 |
5 | EGHOLM Jakob | 69 |
7 | MCNULTY Brandon | 69 |
9 | ANDERSON Joshua | 82 |
10 | GARRISON Ian | 76 |
13 | SHIGEMITSU Jo | 62 |
16 | STITES Tyler | 60 |
26 | KRON Andreas | 63 |
28 | HULGAARD Morten | 73 |
36 | BJERG Mikkel | 78 |
38 | MUNDAY Samuel | 57 |
51 | IRVINE Declan | 75 |
65 | PALAMAREK Ethan | 61 |
70 | GROUBE Carne | 69 |
83 | BEADLE Hamish | 64 |
105 | BATT Ethan | 76 |
108 | FOUCHÉ James | 71 |
113 | FOLEY Michael | 72 |