Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 145
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Stites
1
60 kgMcNulty
2
69 kgShigemitsu
5
62 kgAnderson
6
82 kgFouché
10
71 kgStrong
12
66 kgKron
19
63 kgGroube
20
69 kgBjerg
22
78 kgIrvine
24
75 kgGarrison
29
76 kgHulgaard
59
73 kgPalamarek
75
61 kgEgholm
95
69 kgChrétien
96
65 kgBeadle
112
64 kgBatt
113
76 kgFoley
127
72 kgMunday
134
57 kg
1
60 kgMcNulty
2
69 kgShigemitsu
5
62 kgAnderson
6
82 kgFouché
10
71 kgStrong
12
66 kgKron
19
63 kgGroube
20
69 kgBjerg
22
78 kgIrvine
24
75 kgGarrison
29
76 kgHulgaard
59
73 kgPalamarek
75
61 kgEgholm
95
69 kgChrétien
96
65 kgBeadle
112
64 kgBatt
113
76 kgFoley
127
72 kgMunday
134
57 kg
Weight (KG) →
Result →
82
57
1
134
# | Rider | Weight (KG) |
---|---|---|
1 | STITES Tyler | 60 |
2 | MCNULTY Brandon | 69 |
5 | SHIGEMITSU Jo | 62 |
6 | ANDERSON Joshua | 82 |
10 | FOUCHÉ James | 71 |
12 | STRONG Hayden | 66 |
19 | KRON Andreas | 63 |
20 | GROUBE Carne | 69 |
22 | BJERG Mikkel | 78 |
24 | IRVINE Declan | 75 |
29 | GARRISON Ian | 76 |
59 | HULGAARD Morten | 73 |
75 | PALAMAREK Ethan | 61 |
95 | EGHOLM Jakob | 69 |
96 | CHRÉTIEN Charles-Étienne | 65 |
112 | BEADLE Hamish | 64 |
113 | BATT Ethan | 76 |
127 | FOLEY Michael | 72 |
134 | MUNDAY Samuel | 57 |