Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.5 * weight + 130
This means that on average for every extra kilogram weight a rider loses -1.5 positions in the result.
McNulty
1
69 kgFouché
2
71 kgGarrison
3
76 kgHulgaard
4
73 kgBjerg
5
78 kgKron
7
63 kgEgholm
8
69 kgStites
10
60 kgFoley
17
72 kgChrétien
20
65 kgGroube
22
69 kgPalamarek
25
61 kgAnderson
27
82 kgIrvine
28
75 kgStrong
32
66 kgShigemitsu
56
62 kgBatt
57
76 kgMunday
71
57 kgBeadle
127
64 kg
1
69 kgFouché
2
71 kgGarrison
3
76 kgHulgaard
4
73 kgBjerg
5
78 kgKron
7
63 kgEgholm
8
69 kgStites
10
60 kgFoley
17
72 kgChrétien
20
65 kgGroube
22
69 kgPalamarek
25
61 kgAnderson
27
82 kgIrvine
28
75 kgStrong
32
66 kgShigemitsu
56
62 kgBatt
57
76 kgMunday
71
57 kgBeadle
127
64 kg
Weight (KG) →
Result →
82
57
1
127
# | Rider | Weight (KG) |
---|---|---|
1 | MCNULTY Brandon | 69 |
2 | FOUCHÉ James | 71 |
3 | GARRISON Ian | 76 |
4 | HULGAARD Morten | 73 |
5 | BJERG Mikkel | 78 |
7 | KRON Andreas | 63 |
8 | EGHOLM Jakob | 69 |
10 | STITES Tyler | 60 |
17 | FOLEY Michael | 72 |
20 | CHRÉTIEN Charles-Étienne | 65 |
22 | GROUBE Carne | 69 |
25 | PALAMAREK Ethan | 61 |
27 | ANDERSON Joshua | 82 |
28 | IRVINE Declan | 75 |
32 | STRONG Hayden | 66 |
56 | SHIGEMITSU Jo | 62 |
57 | BATT Ethan | 76 |
71 | MUNDAY Samuel | 57 |
127 | BEADLE Hamish | 64 |