Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.3 * weight + 125
This means that on average for every extra kilogram weight a rider loses -1.3 positions in the result.
McNulty
1
69 kgGarrison
2
76 kgHulgaard
3
73 kgBjerg
4
78 kgKron
5
63 kgStites
7
60 kgEgholm
8
69 kgAnderson
17
82 kgPalamarek
18
61 kgGroube
20
69 kgStrong
21
66 kgIrvine
22
75 kgShigemitsu
40
62 kgFouché
57
71 kgChrétien
64
65 kgBatt
92
76 kgMunday
105
57 kgFoley
107
72 kgBeadle
115
64 kg
1
69 kgGarrison
2
76 kgHulgaard
3
73 kgBjerg
4
78 kgKron
5
63 kgStites
7
60 kgEgholm
8
69 kgAnderson
17
82 kgPalamarek
18
61 kgGroube
20
69 kgStrong
21
66 kgIrvine
22
75 kgShigemitsu
40
62 kgFouché
57
71 kgChrétien
64
65 kgBatt
92
76 kgMunday
105
57 kgFoley
107
72 kgBeadle
115
64 kg
Weight (KG) →
Result →
82
57
1
115
# | Rider | Weight (KG) |
---|---|---|
1 | MCNULTY Brandon | 69 |
2 | GARRISON Ian | 76 |
3 | HULGAARD Morten | 73 |
4 | BJERG Mikkel | 78 |
5 | KRON Andreas | 63 |
7 | STITES Tyler | 60 |
8 | EGHOLM Jakob | 69 |
17 | ANDERSON Joshua | 82 |
18 | PALAMAREK Ethan | 61 |
20 | GROUBE Carne | 69 |
21 | STRONG Hayden | 66 |
22 | IRVINE Declan | 75 |
40 | SHIGEMITSU Jo | 62 |
57 | FOUCHÉ James | 71 |
64 | CHRÉTIEN Charles-Étienne | 65 |
92 | BATT Ethan | 76 |
105 | MUNDAY Samuel | 57 |
107 | FOLEY Michael | 72 |
115 | BEADLE Hamish | 64 |