Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 140
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Garrison
1
76 kgChrétien
3
65 kgHulgaard
4
73 kgAnderson
5
82 kgStites
6
60 kgMcNulty
9
69 kgGroube
21
69 kgKron
26
63 kgBatt
33
76 kgShigemitsu
43
62 kgStrong
45
66 kgBjerg
51
78 kgIrvine
61
75 kgMunday
80
57 kgFouché
81
71 kgPalamarek
86
61 kgFoley
107
72 kgEgholm
108
69 kgBeadle
119
64 kg
1
76 kgChrétien
3
65 kgHulgaard
4
73 kgAnderson
5
82 kgStites
6
60 kgMcNulty
9
69 kgGroube
21
69 kgKron
26
63 kgBatt
33
76 kgShigemitsu
43
62 kgStrong
45
66 kgBjerg
51
78 kgIrvine
61
75 kgMunday
80
57 kgFouché
81
71 kgPalamarek
86
61 kgFoley
107
72 kgEgholm
108
69 kgBeadle
119
64 kg
Weight (KG) →
Result →
82
57
1
119
# | Rider | Weight (KG) |
---|---|---|
1 | GARRISON Ian | 76 |
3 | CHRÉTIEN Charles-Étienne | 65 |
4 | HULGAARD Morten | 73 |
5 | ANDERSON Joshua | 82 |
6 | STITES Tyler | 60 |
9 | MCNULTY Brandon | 69 |
21 | GROUBE Carne | 69 |
26 | KRON Andreas | 63 |
33 | BATT Ethan | 76 |
43 | SHIGEMITSU Jo | 62 |
45 | STRONG Hayden | 66 |
51 | BJERG Mikkel | 78 |
61 | IRVINE Declan | 75 |
80 | MUNDAY Samuel | 57 |
81 | FOUCHÉ James | 71 |
86 | PALAMAREK Ethan | 61 |
107 | FOLEY Michael | 72 |
108 | EGHOLM Jakob | 69 |
119 | BEADLE Hamish | 64 |