Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 17
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Anderson
1
82 kgEgholm
2
69 kgChrétien
8
65 kgStrong
11
66 kgGroube
12
69 kgFouché
18
71 kgStites
20
60 kgMcNulty
21
69 kgShigemitsu
24
62 kgGarrison
28
76 kgIrvine
29
75 kgMunday
31
57 kgFoley
32
72 kgHulgaard
37
73 kgKron
60
63 kgPalamarek
61
61 kgBjerg
64
78 kgBatt
88
76 kg
1
82 kgEgholm
2
69 kgChrétien
8
65 kgStrong
11
66 kgGroube
12
69 kgFouché
18
71 kgStites
20
60 kgMcNulty
21
69 kgShigemitsu
24
62 kgGarrison
28
76 kgIrvine
29
75 kgMunday
31
57 kgFoley
32
72 kgHulgaard
37
73 kgKron
60
63 kgPalamarek
61
61 kgBjerg
64
78 kgBatt
88
76 kg
Weight (KG) →
Result →
82
57
1
88
# | Rider | Weight (KG) |
---|---|---|
1 | ANDERSON Joshua | 82 |
2 | EGHOLM Jakob | 69 |
8 | CHRÉTIEN Charles-Étienne | 65 |
11 | STRONG Hayden | 66 |
12 | GROUBE Carne | 69 |
18 | FOUCHÉ James | 71 |
20 | STITES Tyler | 60 |
21 | MCNULTY Brandon | 69 |
24 | SHIGEMITSU Jo | 62 |
28 | GARRISON Ian | 76 |
29 | IRVINE Declan | 75 |
31 | MUNDAY Samuel | 57 |
32 | FOLEY Michael | 72 |
37 | HULGAARD Morten | 73 |
60 | KRON Andreas | 63 |
61 | PALAMAREK Ethan | 61 |
64 | BJERG Mikkel | 78 |
88 | BATT Ethan | 76 |