Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.6 * weight - 50
This means that on average for every extra kilogram weight a rider loses 1.6 positions in the result.
Strong
24
66 kgShigemitsu
25
62 kgHulgaard
27
73 kgMcNulty
33
69 kgFouché
37
71 kgMunday
40
57 kgChrétien
42
65 kgFoley
47
72 kgKron
49
63 kgGarrison
55
76 kgPalamarek
67
61 kgBjerg
70
78 kgEgholm
71
69 kgStites
76
60 kgGroube
87
69 kgAnderson
88
82 kgBatt
97
76 kgIrvine
106
75 kg
24
66 kgShigemitsu
25
62 kgHulgaard
27
73 kgMcNulty
33
69 kgFouché
37
71 kgMunday
40
57 kgChrétien
42
65 kgFoley
47
72 kgKron
49
63 kgGarrison
55
76 kgPalamarek
67
61 kgBjerg
70
78 kgEgholm
71
69 kgStites
76
60 kgGroube
87
69 kgAnderson
88
82 kgBatt
97
76 kgIrvine
106
75 kg
Weight (KG) →
Result →
82
57
24
106
# | Rider | Weight (KG) |
---|---|---|
24 | STRONG Hayden | 66 |
25 | SHIGEMITSU Jo | 62 |
27 | HULGAARD Morten | 73 |
33 | MCNULTY Brandon | 69 |
37 | FOUCHÉ James | 71 |
40 | MUNDAY Samuel | 57 |
42 | CHRÉTIEN Charles-Étienne | 65 |
47 | FOLEY Michael | 72 |
49 | KRON Andreas | 63 |
55 | GARRISON Ian | 76 |
67 | PALAMAREK Ethan | 61 |
70 | BJERG Mikkel | 78 |
71 | EGHOLM Jakob | 69 |
76 | STITES Tyler | 60 |
87 | GROUBE Carne | 69 |
88 | ANDERSON Joshua | 82 |
97 | BATT Ethan | 76 |
106 | IRVINE Declan | 75 |