Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 29
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Pickrell
1
72 kgMainguenaud
4
63 kgBourgoyne
8
66 kgSheehan
18
69 kgKirby
21
70 kgMiles
25
64 kgQuinn
29
67 kgCarreau
31
68 kgGilbertson
44
68 kgJussaume
45
70 kgOnodera
49
63 kgTuazon
55
55 kgRussell
89
64 kgJuneau
91
67 kgFroner
92
63 kgVanluxemborg
94
68 kgSirman
106
77 kgPedersen
132
71 kg
1
72 kgMainguenaud
4
63 kgBourgoyne
8
66 kgSheehan
18
69 kgKirby
21
70 kgMiles
25
64 kgQuinn
29
67 kgCarreau
31
68 kgGilbertson
44
68 kgJussaume
45
70 kgOnodera
49
63 kgTuazon
55
55 kgRussell
89
64 kgJuneau
91
67 kgFroner
92
63 kgVanluxemborg
94
68 kgSirman
106
77 kgPedersen
132
71 kg
Weight (KG) →
Result →
77
55
1
132
# | Rider | Weight (KG) |
---|---|---|
1 | PICKRELL Riley | 72 |
4 | MAINGUENAUD Tom | 63 |
8 | BOURGOYNE Lucas | 66 |
18 | SHEEHAN Riley | 69 |
21 | KIRBY Kyle | 70 |
25 | MILES Carson | 64 |
29 | QUINN Sean | 67 |
31 | CARREAU Lukas | 68 |
44 | GILBERTSON Theo | 68 |
45 | JUSSAUME Tristan | 70 |
49 | ONODERA Kei | 63 |
55 | TUAZON Ron Francoise | 55 |
89 | RUSSELL Evan | 64 |
91 | JUNEAU Francis | 67 |
92 | FRONER Axel | 63 |
94 | VANLUXEMBORG John | 68 |
106 | SIRMAN Jack | 77 |
132 | PEDERSEN Ellis | 71 |