Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 22
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Sheehan
3
69 kgQuinn
6
67 kgMainguenaud
9
63 kgJussaume
12
70 kgJuneau
22
67 kgBourgoyne
25
66 kgGilbertson
38
68 kgRussell
39
64 kgOnodera
43
63 kgSirman
53
77 kgCarreau
57
68 kgTuazon
67
55 kgFroner
74
63 kgKirby
78
70 kgMiles
84
64 kgVanluxemborg
110
68 kgPedersen
114
71 kgPickrell
121
72 kg
3
69 kgQuinn
6
67 kgMainguenaud
9
63 kgJussaume
12
70 kgJuneau
22
67 kgBourgoyne
25
66 kgGilbertson
38
68 kgRussell
39
64 kgOnodera
43
63 kgSirman
53
77 kgCarreau
57
68 kgTuazon
67
55 kgFroner
74
63 kgKirby
78
70 kgMiles
84
64 kgVanluxemborg
110
68 kgPedersen
114
71 kgPickrell
121
72 kg
Weight (KG) →
Result →
77
55
3
121
# | Rider | Weight (KG) |
---|---|---|
3 | SHEEHAN Riley | 69 |
6 | QUINN Sean | 67 |
9 | MAINGUENAUD Tom | 63 |
12 | JUSSAUME Tristan | 70 |
22 | JUNEAU Francis | 67 |
25 | BOURGOYNE Lucas | 66 |
38 | GILBERTSON Theo | 68 |
39 | RUSSELL Evan | 64 |
43 | ONODERA Kei | 63 |
53 | SIRMAN Jack | 77 |
57 | CARREAU Lukas | 68 |
67 | TUAZON Ron Francoise | 55 |
74 | FRONER Axel | 63 |
78 | KIRBY Kyle | 70 |
84 | MILES Carson | 64 |
110 | VANLUXEMBORG John | 68 |
114 | PEDERSEN Ellis | 71 |
121 | PICKRELL Riley | 72 |