Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.4 * weight + 157
This means that on average for every extra kilogram weight a rider loses -1.4 positions in the result.
Sheehan
1
69 kgPickrell
2
72 kgMainguenaud
6
63 kgQuinn
34
67 kgOnodera
40
63 kgBourgoyne
58
66 kgCarreau
63
68 kgKirby
65
70 kgGilbertson
72
68 kgJussaume
81
70 kgRussell
87
64 kgJuneau
97
67 kgSirman
99
77 kgTuazon
101
55 kgFroner
104
63 kgVanluxemborg
109
68 kgMiles
125
64 kg
1
69 kgPickrell
2
72 kgMainguenaud
6
63 kgQuinn
34
67 kgOnodera
40
63 kgBourgoyne
58
66 kgCarreau
63
68 kgKirby
65
70 kgGilbertson
72
68 kgJussaume
81
70 kgRussell
87
64 kgJuneau
97
67 kgSirman
99
77 kgTuazon
101
55 kgFroner
104
63 kgVanluxemborg
109
68 kgMiles
125
64 kg
Weight (KG) →
Result →
77
55
1
125
# | Rider | Weight (KG) |
---|---|---|
1 | SHEEHAN Riley | 69 |
2 | PICKRELL Riley | 72 |
6 | MAINGUENAUD Tom | 63 |
34 | QUINN Sean | 67 |
40 | ONODERA Kei | 63 |
58 | BOURGOYNE Lucas | 66 |
63 | CARREAU Lukas | 68 |
65 | KIRBY Kyle | 70 |
72 | GILBERTSON Theo | 68 |
81 | JUSSAUME Tristan | 70 |
87 | RUSSELL Evan | 64 |
97 | JUNEAU Francis | 67 |
99 | SIRMAN Jack | 77 |
101 | TUAZON Ron Francoise | 55 |
104 | FRONER Axel | 63 |
109 | VANLUXEMBORG John | 68 |
125 | MILES Carson | 64 |