Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 59
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Couture
5
67 kgRaymond
7
67 kgOlejniczak
13
69 kgMoore
16
62 kgHadfield
18
73 kgSato
29
63 kgRenaud-Tremblay
31
60 kgRobertson
35
59 kgGillingham
36
63 kgValenti
37
69 kgBeaumont
41
58 kgHénon-Boyer
45
76 kgGagné
46
64 kgBoyle
48
77 kgGiammarella
54
62 kgBouchard
56
61 kgMartins
66
64 kg
5
67 kgRaymond
7
67 kgOlejniczak
13
69 kgMoore
16
62 kgHadfield
18
73 kgSato
29
63 kgRenaud-Tremblay
31
60 kgRobertson
35
59 kgGillingham
36
63 kgValenti
37
69 kgBeaumont
41
58 kgHénon-Boyer
45
76 kgGagné
46
64 kgBoyle
48
77 kgGiammarella
54
62 kgBouchard
56
61 kgMartins
66
64 kg
Weight (KG) →
Result →
77
58
5
66
# | Rider | Weight (KG) |
---|---|---|
5 | COUTURE Samuel | 67 |
7 | RAYMOND Louis | 67 |
13 | OLEJNICZAK David | 69 |
16 | MOORE Manu | 62 |
18 | HADFIELD Gavin | 73 |
29 | SATO Marc | 63 |
31 | RENAUD-TREMBLAY Sasha | 60 |
35 | ROBERTSON Elliot | 59 |
36 | GILLINGHAM Jack | 63 |
37 | VALENTI Luke | 69 |
41 | BEAUMONT Cameron | 58 |
45 | HÉNON-BOYER Quentin | 76 |
46 | GAGNÉ Étienne | 64 |
48 | BOYLE Evan | 77 |
54 | GIAMMARELLA Adamo | 62 |
56 | BOUCHARD Alexis | 61 |
66 | MARTINS Henrique | 64 |