Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 41
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Olejniczak
9
69 kgValenti
11
69 kgCouture
12
67 kgGagné
13
64 kgMoore
18
62 kgRaymond
19
67 kgBeaumont
20
58 kgBouchard
22
61 kgSato
26
63 kgRobertson
27
59 kgRenaud-Tremblay
31
60 kgGiammarella
33
62 kgGillingham
38
63 kgHadfield
44
73 kgHénon-Boyer
47
76 kgMartins
49
64 kgBoyle
56
77 kg
9
69 kgValenti
11
69 kgCouture
12
67 kgGagné
13
64 kgMoore
18
62 kgRaymond
19
67 kgBeaumont
20
58 kgBouchard
22
61 kgSato
26
63 kgRobertson
27
59 kgRenaud-Tremblay
31
60 kgGiammarella
33
62 kgGillingham
38
63 kgHadfield
44
73 kgHénon-Boyer
47
76 kgMartins
49
64 kgBoyle
56
77 kg
Weight (KG) →
Result →
77
58
9
56
# | Rider | Weight (KG) |
---|---|---|
9 | OLEJNICZAK David | 69 |
11 | VALENTI Luke | 69 |
12 | COUTURE Samuel | 67 |
13 | GAGNÉ Étienne | 64 |
18 | MOORE Manu | 62 |
19 | RAYMOND Louis | 67 |
20 | BEAUMONT Cameron | 58 |
22 | BOUCHARD Alexis | 61 |
26 | SATO Marc | 63 |
27 | ROBERTSON Elliot | 59 |
31 | RENAUD-TREMBLAY Sasha | 60 |
33 | GIAMMARELLA Adamo | 62 |
38 | GILLINGHAM Jack | 63 |
44 | HADFIELD Gavin | 73 |
47 | HÉNON-BOYER Quentin | 76 |
49 | MARTINS Henrique | 64 |
56 | BOYLE Evan | 77 |