Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.8 * weight + 82
This means that on average for every extra kilogram weight a rider loses -0.8 positions in the result.
Boyle
1
77 kgHadfield
8
73 kgMoore
10
62 kgGiammarella
14
62 kgValenti
15
69 kgOlejniczak
17
69 kgRenaud-Tremblay
18
60 kgCouture
19
67 kgRaymond
23
67 kgRobertson
26
59 kgBouchard
28
61 kgShein
33
63 kgGillingham
35
63 kgSato
37
63 kgMartins
51
64 kgGagné
59
64 kgHénon-Boyer
60
76 kgBeaumont
61
58 kg
1
77 kgHadfield
8
73 kgMoore
10
62 kgGiammarella
14
62 kgValenti
15
69 kgOlejniczak
17
69 kgRenaud-Tremblay
18
60 kgCouture
19
67 kgRaymond
23
67 kgRobertson
26
59 kgBouchard
28
61 kgShein
33
63 kgGillingham
35
63 kgSato
37
63 kgMartins
51
64 kgGagné
59
64 kgHénon-Boyer
60
76 kgBeaumont
61
58 kg
Weight (KG) →
Result →
77
58
1
61
# | Rider | Weight (KG) |
---|---|---|
1 | BOYLE Evan | 77 |
8 | HADFIELD Gavin | 73 |
10 | MOORE Manu | 62 |
14 | GIAMMARELLA Adamo | 62 |
15 | VALENTI Luke | 69 |
17 | OLEJNICZAK David | 69 |
18 | RENAUD-TREMBLAY Sasha | 60 |
19 | COUTURE Samuel | 67 |
23 | RAYMOND Louis | 67 |
26 | ROBERTSON Elliot | 59 |
28 | BOUCHARD Alexis | 61 |
33 | SHEIN Sam | 63 |
35 | GILLINGHAM Jack | 63 |
37 | SATO Marc | 63 |
51 | MARTINS Henrique | 64 |
59 | GAGNÉ Étienne | 64 |
60 | HÉNON-BOYER Quentin | 76 |
61 | BEAUMONT Cameron | 58 |