Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 102
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Boyle
4
77 kgHadfield
11
73 kgCouture
12
67 kgRaymond
13
67 kgMoore
14
62 kgValenti
15
69 kgOlejniczak
17
69 kgRenaud-Tremblay
18
60 kgRobertson
22
59 kgShein
28
63 kgGillingham
30
63 kgSato
31
63 kgGiammarella
42
62 kgGagné
44
64 kgHénon-Boyer
45
76 kgBeaumont
46
58 kgBouchard
51
61 kgMartins
63
64 kg
4
77 kgHadfield
11
73 kgCouture
12
67 kgRaymond
13
67 kgMoore
14
62 kgValenti
15
69 kgOlejniczak
17
69 kgRenaud-Tremblay
18
60 kgRobertson
22
59 kgShein
28
63 kgGillingham
30
63 kgSato
31
63 kgGiammarella
42
62 kgGagné
44
64 kgHénon-Boyer
45
76 kgBeaumont
46
58 kgBouchard
51
61 kgMartins
63
64 kg
Weight (KG) →
Result →
77
58
4
63
# | Rider | Weight (KG) |
---|---|---|
4 | BOYLE Evan | 77 |
11 | HADFIELD Gavin | 73 |
12 | COUTURE Samuel | 67 |
13 | RAYMOND Louis | 67 |
14 | MOORE Manu | 62 |
15 | VALENTI Luke | 69 |
17 | OLEJNICZAK David | 69 |
18 | RENAUD-TREMBLAY Sasha | 60 |
22 | ROBERTSON Elliot | 59 |
28 | SHEIN Sam | 63 |
30 | GILLINGHAM Jack | 63 |
31 | SATO Marc | 63 |
42 | GIAMMARELLA Adamo | 62 |
44 | GAGNÉ Étienne | 64 |
45 | HÉNON-BOYER Quentin | 76 |
46 | BEAUMONT Cameron | 58 |
51 | BOUCHARD Alexis | 61 |
63 | MARTINS Henrique | 64 |