Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 55
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Hadfield
3
73 kgSato
5
63 kgMartins
11
64 kgMoore
15
62 kgOlejniczak
19
69 kgGagné
22
64 kgRenaud-Tremblay
29
60 kgRaymond
30
67 kgBeaumont
32
58 kgValenti
34
69 kgGiammarella
41
62 kgBoyle
42
77 kgGillingham
43
63 kgHénon-Boyer
44
76 kgBouchard
48
61 kgRobertson
55
59 kgCouture
63
63 kg
3
73 kgSato
5
63 kgMartins
11
64 kgMoore
15
62 kgOlejniczak
19
69 kgGagné
22
64 kgRenaud-Tremblay
29
60 kgRaymond
30
67 kgBeaumont
32
58 kgValenti
34
69 kgGiammarella
41
62 kgBoyle
42
77 kgGillingham
43
63 kgHénon-Boyer
44
76 kgBouchard
48
61 kgRobertson
55
59 kgCouture
63
63 kg
Weight (KG) →
Result →
77
58
3
63
# | Rider | Weight (KG) |
---|---|---|
3 | HADFIELD Gavin | 73 |
5 | SATO Marc | 63 |
11 | MARTINS Henrique | 64 |
15 | MOORE Manu | 62 |
19 | OLEJNICZAK David | 69 |
22 | GAGNÉ Étienne | 64 |
29 | RENAUD-TREMBLAY Sasha | 60 |
30 | RAYMOND Louis | 67 |
32 | BEAUMONT Cameron | 58 |
34 | VALENTI Luke | 69 |
41 | GIAMMARELLA Adamo | 62 |
42 | BOYLE Evan | 77 |
43 | GILLINGHAM Jack | 63 |
44 | HÉNON-BOYER Quentin | 76 |
48 | BOUCHARD Alexis | 61 |
55 | ROBERTSON Elliot | 59 |
63 | COUTURE Samuel | 63 |