Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 41
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Valenti
2
69 kgGiammarella
6
62 kgBouchard
9
61 kgOlejniczak
10
69 kgBeaumont
11
58 kgGagné
20
64 kgMoore
22
62 kgRenaud-Tremblay
23
60 kgHadfield
24
73 kgRobertson
25
59 kgGillingham
26
63 kgRaymond
27
67 kgShein
31
63 kgBoyle
37
77 kgSato
44
63 kgHénon-Boyer
61
76 kgMartins
62
64 kg
2
69 kgGiammarella
6
62 kgBouchard
9
61 kgOlejniczak
10
69 kgBeaumont
11
58 kgGagné
20
64 kgMoore
22
62 kgRenaud-Tremblay
23
60 kgHadfield
24
73 kgRobertson
25
59 kgGillingham
26
63 kgRaymond
27
67 kgShein
31
63 kgBoyle
37
77 kgSato
44
63 kgHénon-Boyer
61
76 kgMartins
62
64 kg
Weight (KG) →
Result →
77
58
2
62
# | Rider | Weight (KG) |
---|---|---|
2 | VALENTI Luke | 69 |
6 | GIAMMARELLA Adamo | 62 |
9 | BOUCHARD Alexis | 61 |
10 | OLEJNICZAK David | 69 |
11 | BEAUMONT Cameron | 58 |
20 | GAGNÉ Étienne | 64 |
22 | MOORE Manu | 62 |
23 | RENAUD-TREMBLAY Sasha | 60 |
24 | HADFIELD Gavin | 73 |
25 | ROBERTSON Elliot | 59 |
26 | GILLINGHAM Jack | 63 |
27 | RAYMOND Louis | 67 |
31 | SHEIN Sam | 63 |
37 | BOYLE Evan | 77 |
44 | SATO Marc | 63 |
61 | HÉNON-BOYER Quentin | 76 |
62 | MARTINS Henrique | 64 |