Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 75
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Olejniczak
3
69 kgBouchard
5
61 kgGiammarella
9
62 kgHénon-Boyer
22
76 kgMoore
25
62 kgGagné
27
64 kgMartins
29
64 kgShein
30
63 kgHadfield
31
73 kgRaymond
32
67 kgValenti
35
69 kgGillingham
37
63 kgBoyle
41
77 kgRenaud-Tremblay
48
60 kgSato
50
63 kgBeaumont
53
58 kgRobertson
60
59 kg
3
69 kgBouchard
5
61 kgGiammarella
9
62 kgHénon-Boyer
22
76 kgMoore
25
62 kgGagné
27
64 kgMartins
29
64 kgShein
30
63 kgHadfield
31
73 kgRaymond
32
67 kgValenti
35
69 kgGillingham
37
63 kgBoyle
41
77 kgRenaud-Tremblay
48
60 kgSato
50
63 kgBeaumont
53
58 kgRobertson
60
59 kg
Weight (KG) →
Result →
77
58
3
60
# | Rider | Weight (KG) |
---|---|---|
3 | OLEJNICZAK David | 69 |
5 | BOUCHARD Alexis | 61 |
9 | GIAMMARELLA Adamo | 62 |
22 | HÉNON-BOYER Quentin | 76 |
25 | MOORE Manu | 62 |
27 | GAGNÉ Étienne | 64 |
29 | MARTINS Henrique | 64 |
30 | SHEIN Sam | 63 |
31 | HADFIELD Gavin | 73 |
32 | RAYMOND Louis | 67 |
35 | VALENTI Luke | 69 |
37 | GILLINGHAM Jack | 63 |
41 | BOYLE Evan | 77 |
48 | RENAUD-TREMBLAY Sasha | 60 |
50 | SATO Marc | 63 |
53 | BEAUMONT Cameron | 58 |
60 | ROBERTSON Elliot | 59 |