Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 99
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Delrieu
1
69 kgChavanel
3
73 kgPetrov
4
70 kgFofonov
5
65 kgPaumier
8
57 kgFédrigo
9
66 kgPoilvet
10
71 kgJonker
11
69 kgOriol
15
65 kgKaggestad
16
66 kgBouyer
17
65 kgRasch
19
72 kgRinero
20
65 kgRutkiewicz
21
66 kgMaignan
25
63 kgPencolé
28
74 kgLoder
31
62 kgSalmon
32
60 kgRenier
33
69 kgClain
40
59 kgRatti
41
64 kgHervé
44
60 kg
1
69 kgChavanel
3
73 kgPetrov
4
70 kgFofonov
5
65 kgPaumier
8
57 kgFédrigo
9
66 kgPoilvet
10
71 kgJonker
11
69 kgOriol
15
65 kgKaggestad
16
66 kgBouyer
17
65 kgRasch
19
72 kgRinero
20
65 kgRutkiewicz
21
66 kgMaignan
25
63 kgPencolé
28
74 kgLoder
31
62 kgSalmon
32
60 kgRenier
33
69 kgClain
40
59 kgRatti
41
64 kgHervé
44
60 kg
Weight (KG) →
Result →
74
57
1
44
# | Rider | Weight (KG) |
---|---|---|
1 | DELRIEU David | 69 |
3 | CHAVANEL Sylvain | 73 |
4 | PETROV Evgeni | 70 |
5 | FOFONOV Dmitriy | 65 |
8 | PAUMIER Laurent | 57 |
9 | FÉDRIGO Pierrick | 66 |
10 | POILVET Benoît | 71 |
11 | JONKER Patrick | 69 |
15 | ORIOL Christophe | 65 |
16 | KAGGESTAD Mads | 66 |
17 | BOUYER Franck | 65 |
19 | RASCH Gabriel | 72 |
20 | RINERO Christophe | 65 |
21 | RUTKIEWICZ Marek | 66 |
25 | MAIGNAN Gilles | 63 |
28 | PENCOLÉ Franck | 74 |
31 | LODER Thierry | 62 |
32 | SALMON Benoît | 60 |
33 | RENIER Franck | 69 |
40 | CLAIN Médéric | 59 |
41 | RATTI Eddy | 64 |
44 | HERVÉ Cédric | 60 |