Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Naibo
1
62 kgPecharromán
2
78 kgPlouhinec
3
63 kgPérez Rodríguez
4
67 kgDuque
5
59 kgDi Grégorio
6
67 kgle Boulanger
7
70 kgMercado
8
56 kgTurpin
9
57 kgBellotti
10
65 kgMoreni
11
65 kgSalmon
13
60 kgBodrogi
14
79 kgWiggins
15
76 kgAtienza
18
60 kgBuffaz
19
64 kgHesjedal
20
73 kgRoy
21
70 kgDumoulin
22
57 kgFinot
23
65 kg
1
62 kgPecharromán
2
78 kgPlouhinec
3
63 kgPérez Rodríguez
4
67 kgDuque
5
59 kgDi Grégorio
6
67 kgle Boulanger
7
70 kgMercado
8
56 kgTurpin
9
57 kgBellotti
10
65 kgMoreni
11
65 kgSalmon
13
60 kgBodrogi
14
79 kgWiggins
15
76 kgAtienza
18
60 kgBuffaz
19
64 kgHesjedal
20
73 kgRoy
21
70 kgDumoulin
22
57 kgFinot
23
65 kg
Weight (KG) →
Result →
79
56
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | NAIBO Carl | 62 |
2 | PECHARROMÁN José Antonio | 78 |
3 | PLOUHINEC Samuel | 63 |
4 | PÉREZ RODRÍGUEZ Luis | 67 |
5 | DUQUE Leonardo Fabio | 59 |
6 | DI GRÉGORIO Rémy | 67 |
7 | LE BOULANGER Yoann | 70 |
8 | MERCADO Juan Miguel | 56 |
9 | TURPIN Ludovic | 57 |
10 | BELLOTTI Francesco | 65 |
11 | MORENI Cristian | 65 |
13 | SALMON Benoît | 60 |
14 | BODROGI László | 79 |
15 | WIGGINS Bradley | 76 |
18 | ATIENZA Daniel | 60 |
19 | BUFFAZ Mickaël | 64 |
20 | HESJEDAL Ryder | 73 |
21 | ROY Jérémy | 70 |
22 | DUMOULIN Samuel | 57 |
23 | FINOT Frédéric | 65 |