Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Van Avermaet
1
74 kgRaboň
2
74 kgGoesinnen
3
75 kgRojas
4
70 kgBouet
6
67 kgGourov
7
75 kgMuravyev
8
75 kgErviti
9
82 kgDupont
10
57 kgGallopin
12
69 kgSchär
13
78 kgNuyens
15
68 kgZaugg
17
58 kgLefèvre
18
67 kgLemoine
19
73 kgvan Winden
20
70 kgRoux
21
73 kgSentjens
22
75 kgJérôme
23
65 kg
1
74 kgRaboň
2
74 kgGoesinnen
3
75 kgRojas
4
70 kgBouet
6
67 kgGourov
7
75 kgMuravyev
8
75 kgErviti
9
82 kgDupont
10
57 kgGallopin
12
69 kgSchär
13
78 kgNuyens
15
68 kgZaugg
17
58 kgLefèvre
18
67 kgLemoine
19
73 kgvan Winden
20
70 kgRoux
21
73 kgSentjens
22
75 kgJérôme
23
65 kg
Weight (KG) →
Result →
82
57
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | VAN AVERMAET Greg | 74 |
2 | RABOŇ František | 74 |
3 | GOESINNEN Floris | 75 |
4 | ROJAS José Joaquín | 70 |
6 | BOUET Maxime | 67 |
7 | GOUROV Maxim | 75 |
8 | MURAVYEV Dmitriy | 75 |
9 | ERVITI Imanol | 82 |
10 | DUPONT Hubert | 57 |
12 | GALLOPIN Tony | 69 |
13 | SCHÄR Michael | 78 |
15 | NUYENS Nick | 68 |
17 | ZAUGG Oliver | 58 |
18 | LEFÈVRE Laurent | 67 |
19 | LEMOINE Cyril | 73 |
20 | VAN WINDEN Dennis | 70 |
21 | ROUX Anthony | 73 |
22 | SENTJENS Roy | 75 |
23 | JÉRÔME Vincent | 65 |