Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 12
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Elissonde
1
52 kgChevrier
2
56 kgKudus
3
58 kgParra
4
51 kgBerhane
6
66 kgMartin
7
55 kgvan Baarle
9
78 kgTusveld
10
70 kgOchoa
12
61 kgPaillot
14
72 kgvan der Haar
15
58 kgVerona
16
68 kgLecuisinier
17
65 kgZabel
18
81 kgRathe
19
74 kgGuerin
20
64 kgAlaphilippe
21
62 kgGuillemois
22
66 kgCoquard
23
59 kg
1
52 kgChevrier
2
56 kgKudus
3
58 kgParra
4
51 kgBerhane
6
66 kgMartin
7
55 kgvan Baarle
9
78 kgTusveld
10
70 kgOchoa
12
61 kgPaillot
14
72 kgvan der Haar
15
58 kgVerona
16
68 kgLecuisinier
17
65 kgZabel
18
81 kgRathe
19
74 kgGuerin
20
64 kgAlaphilippe
21
62 kgGuillemois
22
66 kgCoquard
23
59 kg
Weight (KG) →
Result →
81
51
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | ELISSONDE Kenny | 52 |
2 | CHEVRIER Clément | 56 |
3 | KUDUS Merhawi | 58 |
4 | PARRA Heiner Rodrigo | 51 |
6 | BERHANE Natnael | 66 |
7 | MARTIN Guillaume | 55 |
9 | VAN BAARLE Dylan | 78 |
10 | TUSVELD Martijn | 70 |
12 | OCHOA Diego Antonio | 61 |
14 | PAILLOT Yoann | 72 |
15 | VAN DER HAAR Lars | 58 |
16 | VERONA Carlos | 68 |
17 | LECUISINIER Pierre-Henri | 65 |
18 | ZABEL Rick | 81 |
19 | RATHE Jacob | 74 |
20 | GUERIN Alexis | 64 |
21 | ALAPHILIPPE Julian | 62 |
22 | GUILLEMOIS Romain | 66 |
23 | COQUARD Bryan | 59 |