Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Meersman
1
63 kgKreder
2
70 kgSarreau
3
76 kgSerry
4
66 kgAlaphilippe
6
62 kgDuque
7
59 kgGiraud
8
71 kgTeunissen
9
73 kgUrán
10
63 kgCalmejane
11
70 kgBizhigitov
12
76 kgCoppel
13
64 kgTronet
14
67 kgGérard
15
70 kgFeillu
16
62 kgHofstede
17
73 kgJakin
18
71 kgRoosen
19
78 kgBerhane
20
66 kgPaiani
21
77 kgCavendish
22
70 kgFedosseyev
23
61.5 kgSlagter
24
57 kgVerona
25
68 kg
1
63 kgKreder
2
70 kgSarreau
3
76 kgSerry
4
66 kgAlaphilippe
6
62 kgDuque
7
59 kgGiraud
8
71 kgTeunissen
9
73 kgUrán
10
63 kgCalmejane
11
70 kgBizhigitov
12
76 kgCoppel
13
64 kgTronet
14
67 kgGérard
15
70 kgFeillu
16
62 kgHofstede
17
73 kgJakin
18
71 kgRoosen
19
78 kgBerhane
20
66 kgPaiani
21
77 kgCavendish
22
70 kgFedosseyev
23
61.5 kgSlagter
24
57 kgVerona
25
68 kg
Weight (KG) →
Result →
78
57
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | MEERSMAN Gianni | 63 |
2 | KREDER Raymond | 70 |
3 | SARREAU Marc | 76 |
4 | SERRY Pieter | 66 |
6 | ALAPHILIPPE Julian | 62 |
7 | DUQUE Leonardo Fabio | 59 |
8 | GIRAUD Benjamin | 71 |
9 | TEUNISSEN Mike | 73 |
10 | URÁN Rigoberto | 63 |
11 | CALMEJANE Lilian | 70 |
12 | BIZHIGITOV Zhandos | 76 |
13 | COPPEL Jérôme | 64 |
14 | TRONET Steven | 67 |
15 | GÉRARD Arnaud | 70 |
16 | FEILLU Romain | 62 |
17 | HOFSTEDE Lennard | 73 |
18 | JAKIN Alo | 71 |
19 | ROOSEN Timo | 78 |
20 | BERHANE Natnael | 66 |
21 | PAIANI Jean-Lou | 77 |
22 | CAVENDISH Mark | 70 |
23 | FEDOSSEYEV Artur | 61.5 |
24 | SLAGTER Tom-Jelte | 57 |
25 | VERONA Carlos | 68 |