Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 10
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Feillu
1
69 kgEl Fares
2
62 kgPeraud
3
62 kgLatour
4
66 kgPaillot
5
72 kgKonrad
6
64 kgJeandesboz
7
69 kgMartin
8
55 kgCousin
9
74 kgDupont
10
57 kgPozzovivo
11
53 kgLevarlet
12
67 kgKruijswijk
13
63 kgBrun
14
73 kgSalerno
16
64 kgHardy
17
62 kgPacher
18
62 kgGouault
19
61 kgVachon
20
65 kgOomen
21
65 kgCourteille
22
62 kgGeniez
23
68 kgPeters
24
72 kg
1
69 kgEl Fares
2
62 kgPeraud
3
62 kgLatour
4
66 kgPaillot
5
72 kgKonrad
6
64 kgJeandesboz
7
69 kgMartin
8
55 kgCousin
9
74 kgDupont
10
57 kgPozzovivo
11
53 kgLevarlet
12
67 kgKruijswijk
13
63 kgBrun
14
73 kgSalerno
16
64 kgHardy
17
62 kgPacher
18
62 kgGouault
19
61 kgVachon
20
65 kgOomen
21
65 kgCourteille
22
62 kgGeniez
23
68 kgPeters
24
72 kg
Weight (KG) →
Result →
74
53
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | FEILLU Brice | 69 |
2 | EL FARES Julien | 62 |
3 | PERAUD Jean-Christophe | 62 |
4 | LATOUR Pierre | 66 |
5 | PAILLOT Yoann | 72 |
6 | KONRAD Patrick | 64 |
7 | JEANDESBOZ Fabrice | 69 |
8 | MARTIN Guillaume | 55 |
9 | COUSIN Jérôme | 74 |
10 | DUPONT Hubert | 57 |
11 | POZZOVIVO Domenico | 53 |
12 | LEVARLET Guillaume | 67 |
13 | KRUIJSWIJK Steven | 63 |
14 | BRUN Frederic | 73 |
16 | SALERNO Cristiano | 64 |
17 | HARDY Romain | 62 |
18 | PACHER Quentin | 62 |
19 | GOUAULT Pierre | 61 |
20 | VACHON Florian | 65 |
21 | OOMEN Sam | 65 |
22 | COURTEILLE Arnaud | 62 |
23 | GENIEZ Alexandre | 68 |
24 | PETERS Nans | 72 |