Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 15
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Teunissen
1
73 kgBouhanni
2
65 kgMaldonado
3
57 kgEngoulvent
4
82 kgDumoulin
5
57 kgGeniez
6
68 kgBarbier
7
79 kgCousin
8
74 kgSarreau
9
76 kgKonrad
10
64 kgMarkus
11
75 kgGouault
12
61 kgMeijers
13
68 kgCastelijns
14
70 kgTorres
15
70 kgLemoine
16
73 kgPeters
17
72 kgvan der Lijke
20
61 kgThurau
21
73 kgEl Fares
22
62 kg
1
73 kgBouhanni
2
65 kgMaldonado
3
57 kgEngoulvent
4
82 kgDumoulin
5
57 kgGeniez
6
68 kgBarbier
7
79 kgCousin
8
74 kgSarreau
9
76 kgKonrad
10
64 kgMarkus
11
75 kgGouault
12
61 kgMeijers
13
68 kgCastelijns
14
70 kgTorres
15
70 kgLemoine
16
73 kgPeters
17
72 kgvan der Lijke
20
61 kgThurau
21
73 kgEl Fares
22
62 kg
Weight (KG) →
Result →
82
57
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | TEUNISSEN Mike | 73 |
2 | BOUHANNI Nacer | 65 |
3 | MALDONADO Anthony | 57 |
4 | ENGOULVENT Jimmy | 82 |
5 | DUMOULIN Samuel | 57 |
6 | GENIEZ Alexandre | 68 |
7 | BARBIER Rudy | 79 |
8 | COUSIN Jérôme | 74 |
9 | SARREAU Marc | 76 |
10 | KONRAD Patrick | 64 |
11 | MARKUS Barry | 75 |
12 | GOUAULT Pierre | 61 |
13 | MEIJERS Jeroen | 68 |
14 | CASTELIJNS Twan | 70 |
15 | TORRES Albert | 70 |
16 | LEMOINE Cyril | 73 |
17 | PETERS Nans | 72 |
20 | VAN DER LIJKE Nick | 61 |
21 | THURAU Björn | 73 |
22 | EL FARES Julien | 62 |