Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 2
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Latour
1
66 kgPeters
2
72 kgOomen
3
65 kgMartin
4
55 kgZemlyakov
5
70 kgRoosen
6
78 kgHofstede
7
73 kgMaison
8
61 kgLedanois
9
67 kgGouault
10
61 kgGrellier
11
65 kgLecuisinier
12
65 kgDoubey
15
62 kgMeijers
17
68 kgWilliams
18
73 kgBol
19
83 kgOien
20
68 kgBarta
21
61 kg
1
66 kgPeters
2
72 kgOomen
3
65 kgMartin
4
55 kgZemlyakov
5
70 kgRoosen
6
78 kgHofstede
7
73 kgMaison
8
61 kgLedanois
9
67 kgGouault
10
61 kgGrellier
11
65 kgLecuisinier
12
65 kgDoubey
15
62 kgMeijers
17
68 kgWilliams
18
73 kgBol
19
83 kgOien
20
68 kgBarta
21
61 kg
Weight (KG) →
Result →
83
55
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | LATOUR Pierre | 66 |
2 | PETERS Nans | 72 |
3 | OOMEN Sam | 65 |
4 | MARTIN Guillaume | 55 |
5 | ZEMLYAKOV Oleg | 70 |
6 | ROOSEN Timo | 78 |
7 | HOFSTEDE Lennard | 73 |
8 | MAISON Jérémy | 61 |
9 | LEDANOIS Kévin | 67 |
10 | GOUAULT Pierre | 61 |
11 | GRELLIER Fabien | 65 |
12 | LECUISINIER Pierre-Henri | 65 |
15 | DOUBEY Fabien | 62 |
17 | MEIJERS Jeroen | 68 |
18 | WILLIAMS Tyler | 73 |
19 | BOL Cees | 83 |
20 | OIEN Justin | 68 |
21 | BARTA Will | 61 |