Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Moreno
1
63 kgHofstetter
2
66 kgVichot
3
74 kgManzin
4
69 kgCalmejane
5
70 kgHirschi
6
61 kgPasqualon
7
75 kgVilela
8
59 kgPage
9
64 kgEdet
10
60 kgFonseca
11
56 kgBadilatti
12
62 kgTaaramäe
13
73 kgPeters
14
72 kgDumoulin
15
57 kgGarcía
17
55 kgPerez
18
70 kgMaldonado
19
57 kgMadrazo
20
61 kgThomas
21
68 kgRies
22
67 kgTleubayev
23
70 kgSmith
24
67 kg
1
63 kgHofstetter
2
66 kgVichot
3
74 kgManzin
4
69 kgCalmejane
5
70 kgHirschi
6
61 kgPasqualon
7
75 kgVilela
8
59 kgPage
9
64 kgEdet
10
60 kgFonseca
11
56 kgBadilatti
12
62 kgTaaramäe
13
73 kgPeters
14
72 kgDumoulin
15
57 kgGarcía
17
55 kgPerez
18
70 kgMaldonado
19
57 kgMadrazo
20
61 kgThomas
21
68 kgRies
22
67 kgTleubayev
23
70 kgSmith
24
67 kg
Weight (KG) →
Result →
75
55
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | MORENO Javier | 63 |
2 | HOFSTETTER Hugo | 66 |
3 | VICHOT Arthur | 74 |
4 | MANZIN Lorrenzo | 69 |
5 | CALMEJANE Lilian | 70 |
6 | HIRSCHI Marc | 61 |
7 | PASQUALON Andrea | 75 |
8 | VILELA Ricardo | 59 |
9 | PAGE Dylan | 64 |
10 | EDET Nicolas | 60 |
11 | FONSECA Armindo | 56 |
12 | BADILATTI Matteo | 62 |
13 | TAARAMÄE Rein | 73 |
14 | PETERS Nans | 72 |
15 | DUMOULIN Samuel | 57 |
17 | GARCÍA Jhojan | 55 |
18 | PEREZ Anthony | 70 |
19 | MALDONADO Anthony | 57 |
20 | MADRAZO Ángel | 61 |
21 | THOMAS Benjamin | 68 |
22 | RIES Michel | 67 |
23 | TLEUBAYEV Ruslan | 70 |
24 | SMITH Dion | 67 |