Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Wilksch
1
62 kgPedrero
2
60 kgAlaphilippe
4
62 kgSkjelmose
5
65 kgBennett
6
58 kgRochas
7
51 kgSosa
8
52 kgMartin
9
55 kgBissegger
10
78 kgRodríguez
11
59 kgMolard
12
62 kgReichenbach
13
64 kgGesbert
14
63 kgHerrada
15
70 kgBidard
16
65 kgBernard
17
60 kgGibbons
18
70 kgVanhoucke
19
65 kgParet-Peintre
20
52 kgFernández
21
60 kgPiccolo
22
64 kgLienhard
23
73 kg
1
62 kgPedrero
2
60 kgAlaphilippe
4
62 kgSkjelmose
5
65 kgBennett
6
58 kgRochas
7
51 kgSosa
8
52 kgMartin
9
55 kgBissegger
10
78 kgRodríguez
11
59 kgMolard
12
62 kgReichenbach
13
64 kgGesbert
14
63 kgHerrada
15
70 kgBidard
16
65 kgBernard
17
60 kgGibbons
18
70 kgVanhoucke
19
65 kgParet-Peintre
20
52 kgFernández
21
60 kgPiccolo
22
64 kgLienhard
23
73 kg
Weight (KG) →
Result →
78
51
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | WILKSCH Hannes | 62 |
2 | PEDRERO Antonio | 60 |
4 | ALAPHILIPPE Julian | 62 |
5 | SKJELMOSE Mattias | 65 |
6 | BENNETT George | 58 |
7 | ROCHAS Rémy | 51 |
8 | SOSA Iván Ramiro | 52 |
9 | MARTIN Guillaume | 55 |
10 | BISSEGGER Stefan | 78 |
11 | RODRÍGUEZ Cristián | 59 |
12 | MOLARD Rudy | 62 |
13 | REICHENBACH Sébastien | 64 |
14 | GESBERT Élie | 63 |
15 | HERRADA Jesús | 70 |
16 | BIDARD François | 65 |
17 | BERNARD Julien | 60 |
18 | GIBBONS Ryan | 70 |
19 | VANHOUCKE Harm | 65 |
20 | PARET-PEINTRE Valentin | 52 |
21 | FERNÁNDEZ Rubén | 60 |
22 | PICCOLO Andrea | 64 |
23 | LIENHARD Fabian | 73 |