Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.3 * weight - 106
This means that on average for every extra kilogram weight a rider loses 2.3 positions in the result.
Ljungskog
2
57 kgDoppmann
4
55 kgPučinskaitė
5
54 kgSandig
6
62 kgArndt
7
59 kgLichtenberg
8
52 kgSalvetat
10
55 kgPitel
12
52 kgVisser
17
59 kgKiesanowski
18
56 kgVilajosana
26
57 kgWood
29
56 kgMin
30
56 kgMeng
32
65 kgTeutenberg
48
64 kgBecker
54
64 kgGarcía
59
54 kgBeltman
60
68 kgWong Wan
69
54 kgSlappendel
72
67 kg
2
57 kgDoppmann
4
55 kgPučinskaitė
5
54 kgSandig
6
62 kgArndt
7
59 kgLichtenberg
8
52 kgSalvetat
10
55 kgPitel
12
52 kgVisser
17
59 kgKiesanowski
18
56 kgVilajosana
26
57 kgWood
29
56 kgMin
30
56 kgMeng
32
65 kgTeutenberg
48
64 kgBecker
54
64 kgGarcía
59
54 kgBeltman
60
68 kgWong Wan
69
54 kgSlappendel
72
67 kg
Weight (KG) →
Result →
68
52
2
72
# | Rider | Weight (KG) |
---|---|---|
2 | LJUNGSKOG Susanne | 57 |
4 | DOPPMANN Priska | 55 |
5 | PUČINSKAITĖ Edita | 54 |
6 | SANDIG Madeleine | 62 |
7 | ARNDT Judith | 59 |
8 | LICHTENBERG Claudia | 52 |
10 | SALVETAT Maryline | 55 |
12 | PITEL Edwige | 52 |
17 | VISSER Adrie | 59 |
18 | KIESANOWSKI Joanne | 56 |
26 | VILAJOSANA Marta | 57 |
29 | WOOD Oenone | 56 |
30 | MIN Gao | 56 |
32 | MENG Lang | 65 |
48 | TEUTENBERG Ina-Yoko | 64 |
54 | BECKER Charlotte | 64 |
59 | GARCÍA Evelyn | 54 |
60 | BELTMAN Chantal | 68 |
69 | WONG WAN Yiu | 54 |
72 | SLAPPENDEL Iris | 67 |