Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 4.1 * weight + 361
This means that on average for every extra kilogram weight a rider loses 4.1 positions in the result.
De Wilde
1
70 kgHoste
4
76 kgBalboa
7
66 kgMarie
10
68 kgFernández
12
68 kgBernaudeau
20
64 kgFignon
990
67 kgWampers
990
82 kgSaronni
990
65 kgEarley
990
62 kgChevallier
990
69 kgJourdan
990
64 kgNavarro
990
77 kgGlaus
990
67 kgMurguialday
990
58 kgPieters
990
82 kgRiis
990
71 kg
1
70 kgHoste
4
76 kgBalboa
7
66 kgMarie
10
68 kgFernández
12
68 kgBernaudeau
20
64 kgFignon
990
67 kgWampers
990
82 kgSaronni
990
65 kgEarley
990
62 kgChevallier
990
69 kgJourdan
990
64 kgNavarro
990
77 kgGlaus
990
67 kgMurguialday
990
58 kgPieters
990
82 kgRiis
990
71 kg
Weight (KG) →
Result →
82
58
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | DE WILDE Etienne | 70 |
4 | HOSTE Frank | 76 |
7 | BALBOA Antonio | 66 |
10 | MARIE Thierry | 68 |
12 | FERNÁNDEZ Juan | 68 |
20 | BERNAUDEAU Jean-René | 64 |
990 | FIGNON Laurent | 67 |
990 | WAMPERS Jean-Marie | 82 |
990 | SARONNI Giuseppe | 65 |
990 | EARLEY Martin | 62 |
990 | CHEVALLIER Philippe | 69 |
990 | JOURDAN Christian | 64 |
990 | NAVARRO Francisco | 77 |
990 | GLAUS Gilbert | 67 |
990 | MURGUIALDAY Javier | 58 |
990 | PIETERS Peter | 82 |
990 | RIIS Bjarne | 71 |