Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.5 * weight + 1059
This means that on average for every extra kilogram weight a rider loses -3.5 positions in the result.
Hoste
2
76 kgMarie
8
68 kgBalboa
14
66 kgFignon
990
67 kgWampers
990
82 kgDe Wilde
990
70 kgFernández
990
68 kgBernaudeau
990
64 kgSaronni
990
65 kgEarley
990
62 kgChevallier
990
69 kgJourdan
990
64 kgNavarro
990
77 kgGlaus
990
67 kgMurguialday
990
58 kgPieters
990
82 kgRiis
990
71 kg
2
76 kgMarie
8
68 kgBalboa
14
66 kgFignon
990
67 kgWampers
990
82 kgDe Wilde
990
70 kgFernández
990
68 kgBernaudeau
990
64 kgSaronni
990
65 kgEarley
990
62 kgChevallier
990
69 kgJourdan
990
64 kgNavarro
990
77 kgGlaus
990
67 kgMurguialday
990
58 kgPieters
990
82 kgRiis
990
71 kg
Weight (KG) →
Result →
82
58
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | HOSTE Frank | 76 |
8 | MARIE Thierry | 68 |
14 | BALBOA Antonio | 66 |
990 | FIGNON Laurent | 67 |
990 | WAMPERS Jean-Marie | 82 |
990 | DE WILDE Etienne | 70 |
990 | FERNÁNDEZ Juan | 68 |
990 | BERNAUDEAU Jean-René | 64 |
990 | SARONNI Giuseppe | 65 |
990 | EARLEY Martin | 62 |
990 | CHEVALLIER Philippe | 69 |
990 | JOURDAN Christian | 64 |
990 | NAVARRO Francisco | 77 |
990 | GLAUS Gilbert | 67 |
990 | MURGUIALDAY Javier | 58 |
990 | PIETERS Peter | 82 |
990 | RIIS Bjarne | 71 |