Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 66
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Díaz
1
63 kgSteevens
6
73 kgMarine
7
69 kgPeffgen
12
67 kgPettersson
16
75 kgCzarnowski
22
71 kgHojlund
23
80 kgCowley
24
66 kgLewis
28
70 kgWest
30
70 kgLasa
33
77 kgBławdzin
38
69 kgČubrić
47
80 kgCiocan
53
72 kgBilić
54
76 kgGazda
56
69 kgKotev
57
82 kgPettersson
65
75 kgRuiner
71
64 kgZieliński
72
80 kg
1
63 kgSteevens
6
73 kgMarine
7
69 kgPeffgen
12
67 kgPettersson
16
75 kgCzarnowski
22
71 kgHojlund
23
80 kgCowley
24
66 kgLewis
28
70 kgWest
30
70 kgLasa
33
77 kgBławdzin
38
69 kgČubrić
47
80 kgCiocan
53
72 kgBilić
54
76 kgGazda
56
69 kgKotev
57
82 kgPettersson
65
75 kgRuiner
71
64 kgZieliński
72
80 kg
Weight (KG) →
Result →
82
63
1
72
# | Rider | Weight (KG) |
---|---|---|
1 | DÍAZ Mariano | 63 |
6 | STEEVENS Harry | 73 |
7 | MARINE Jorge | 69 |
12 | PEFFGEN Wilfried | 67 |
16 | PETTERSSON Gösta | 75 |
22 | CZARNOWSKI Ortwin | 71 |
23 | HOJLUND Ole | 80 |
24 | COWLEY Mike | 66 |
28 | LEWIS Colin | 70 |
30 | WEST Les | 70 |
33 | LASA José Manuel | 77 |
38 | BŁAWDZIN Andrzej | 69 |
47 | ČUBRIĆ Radoš | 80 |
53 | CIOCAN Constantin | 72 |
54 | BILIĆ Cvitko | 76 |
56 | GAZDA Stanislaw | 69 |
57 | KOTEV Dimitar | 82 |
65 | PETTERSSON Sture | 75 |
71 | RUINER Arnold | 64 |
72 | ZIELIŃSKI Rajmund | 80 |