Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2 * weight - 112
This means that on average for every extra kilogram weight a rider loses 2 positions in the result.
Zoetemelk
1
68 kgPettersson
3
75 kgLasa
4
68 kgDuchemin
5
60 kgMortensen
7
70 kgBilsland
8
73 kgHubschmid
9
74 kgden Hertog
10
76 kgBławdzin
12
69 kgParenteau
17
68 kgPettersson
20
75 kgHansen
22
74 kgVasile
29
66 kgRollinson
31
66 kgAndresen
32
75 kgDucreux
41
65 kgJolly
43
76 kgHanusik
58
74 kgAlcántara
62
70 kgMagiera
69
78 kgCzechowski
78
75 kgSchär
79
75 kg
1
68 kgPettersson
3
75 kgLasa
4
68 kgDuchemin
5
60 kgMortensen
7
70 kgBilsland
8
73 kgHubschmid
9
74 kgden Hertog
10
76 kgBławdzin
12
69 kgParenteau
17
68 kgPettersson
20
75 kgHansen
22
74 kgVasile
29
66 kgRollinson
31
66 kgAndresen
32
75 kgDucreux
41
65 kgJolly
43
76 kgHanusik
58
74 kgAlcántara
62
70 kgMagiera
69
78 kgCzechowski
78
75 kgSchär
79
75 kg
Weight (KG) →
Result →
78
60
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | ZOETEMELK Joop | 68 |
3 | PETTERSSON Gösta | 75 |
4 | LASA Miguel María | 68 |
5 | DUCHEMIN Marcel | 60 |
7 | MORTENSEN Leif | 70 |
8 | BILSLAND William | 73 |
9 | HUBSCHMID Bruno | 74 |
10 | DEN HERTOG Fedor | 76 |
12 | BŁAWDZIN Andrzej | 69 |
17 | PARENTEAU Jean-Pierre | 68 |
20 | PETTERSSON Sture | 75 |
22 | HANSEN Jørgen Emil | 74 |
29 | VASILE Teodor | 66 |
31 | ROLLINSON Dave | 66 |
32 | ANDRESEN Thorleif | 75 |
41 | DUCREUX Daniel | 65 |
43 | JOLLY Brian | 76 |
58 | HANUSIK Zygmunt | 74 |
62 | ALCÁNTARA Augustín | 70 |
69 | MAGIERA Jan | 78 |
78 | CZECHOWSKI Zenon | 75 |
79 | SCHÄR Hugo | 75 |