Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 17.4 * weight - 610
This means that on average for every extra kilogram weight a rider loses 17.4 positions in the result.
Bilsland
1
73 kgZoetemelk
2
68 kgLasa
4
68 kgPettersson
5
75 kgHubschmid
6
74 kgDuchemin
7
60 kgPettersson
8
75 kgMortensen
12
70 kgden Hertog
990
76 kgMagiera
990
78 kgJolly
990
76 kgHanusik
990
74 kgRollinson
990
66 kgAndresen
990
75 kgBławdzin
990
69 kgAlcántara
990
70 kgCzechowski
990
75 kgSchär
990
75 kgParenteau
990
68 kgHansen
990
74 kgVasile
990
66 kgDucreux
990
65 kg
1
73 kgZoetemelk
2
68 kgLasa
4
68 kgPettersson
5
75 kgHubschmid
6
74 kgDuchemin
7
60 kgPettersson
8
75 kgMortensen
12
70 kgden Hertog
990
76 kgMagiera
990
78 kgJolly
990
76 kgHanusik
990
74 kgRollinson
990
66 kgAndresen
990
75 kgBławdzin
990
69 kgAlcántara
990
70 kgCzechowski
990
75 kgSchär
990
75 kgParenteau
990
68 kgHansen
990
74 kgVasile
990
66 kgDucreux
990
65 kg
Weight (KG) →
Result →
78
60
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | BILSLAND William | 73 |
2 | ZOETEMELK Joop | 68 |
4 | LASA Miguel María | 68 |
5 | PETTERSSON Gösta | 75 |
6 | HUBSCHMID Bruno | 74 |
7 | DUCHEMIN Marcel | 60 |
8 | PETTERSSON Sture | 75 |
12 | MORTENSEN Leif | 70 |
990 | DEN HERTOG Fedor | 76 |
990 | MAGIERA Jan | 78 |
990 | JOLLY Brian | 76 |
990 | HANUSIK Zygmunt | 74 |
990 | ROLLINSON Dave | 66 |
990 | ANDRESEN Thorleif | 75 |
990 | BŁAWDZIN Andrzej | 69 |
990 | ALCÁNTARA Augustín | 70 |
990 | CZECHOWSKI Zenon | 75 |
990 | SCHÄR Hugo | 75 |
990 | PARENTEAU Jean-Pierre | 68 |
990 | HANSEN Jørgen Emil | 74 |
990 | VASILE Teodor | 66 |
990 | DUCREUX Daniel | 65 |