Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -8.4 * weight + 1321
This means that on average for every extra kilogram weight a rider loses -8.4 positions in the result.
Alcántara
2
70 kgHubschmid
3
74 kgMortensen
4
70 kgPettersson
5
75 kgBławdzin
6
69 kgHansen
8
74 kgPettersson
990
75 kgZoetemelk
990
68 kgden Hertog
990
76 kgMagiera
990
78 kgDuchemin
990
60 kgJolly
990
76 kgLasa
990
68 kgHanusik
990
74 kgRollinson
990
66 kgAndresen
990
75 kgCzechowski
990
75 kgSchär
990
75 kgBilsland
990
73 kgParenteau
990
68 kgVasile
990
66 kgDucreux
990
65 kg
2
70 kgHubschmid
3
74 kgMortensen
4
70 kgPettersson
5
75 kgBławdzin
6
69 kgHansen
8
74 kgPettersson
990
75 kgZoetemelk
990
68 kgden Hertog
990
76 kgMagiera
990
78 kgDuchemin
990
60 kgJolly
990
76 kgLasa
990
68 kgHanusik
990
74 kgRollinson
990
66 kgAndresen
990
75 kgCzechowski
990
75 kgSchär
990
75 kgBilsland
990
73 kgParenteau
990
68 kgVasile
990
66 kgDucreux
990
65 kg
Weight (KG) →
Result →
78
60
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | ALCÁNTARA Augustín | 70 |
3 | HUBSCHMID Bruno | 74 |
4 | MORTENSEN Leif | 70 |
5 | PETTERSSON Sture | 75 |
6 | BŁAWDZIN Andrzej | 69 |
8 | HANSEN Jørgen Emil | 74 |
990 | PETTERSSON Gösta | 75 |
990 | ZOETEMELK Joop | 68 |
990 | DEN HERTOG Fedor | 76 |
990 | MAGIERA Jan | 78 |
990 | DUCHEMIN Marcel | 60 |
990 | JOLLY Brian | 76 |
990 | LASA Miguel María | 68 |
990 | HANUSIK Zygmunt | 74 |
990 | ROLLINSON Dave | 66 |
990 | ANDRESEN Thorleif | 75 |
990 | CZECHOWSKI Zenon | 75 |
990 | SCHÄR Hugo | 75 |
990 | BILSLAND William | 73 |
990 | PARENTEAU Jean-Pierre | 68 |
990 | VASILE Teodor | 66 |
990 | DUCREUX Daniel | 65 |