Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 42.2 * weight - 2288
This means that on average for every extra kilogram weight a rider loses 42.2 positions in the result.
Lasa
3
68 kgDuchemin
6
60 kgPettersson
7
75 kgMortensen
8
70 kgZoetemelk
10
68 kgParenteau
11
68 kgden Hertog
990
76 kgMagiera
990
78 kgJolly
990
76 kgHanusik
990
74 kgRollinson
990
66 kgHubschmid
990
74 kgAndresen
990
75 kgBławdzin
990
69 kgAlcántara
990
70 kgCzechowski
990
75 kgSchär
990
75 kgBilsland
990
73 kgPettersson
990
75 kgHansen
990
74 kgVasile
990
66 kgDucreux
990
65 kg
3
68 kgDuchemin
6
60 kgPettersson
7
75 kgMortensen
8
70 kgZoetemelk
10
68 kgParenteau
11
68 kgden Hertog
990
76 kgMagiera
990
78 kgJolly
990
76 kgHanusik
990
74 kgRollinson
990
66 kgHubschmid
990
74 kgAndresen
990
75 kgBławdzin
990
69 kgAlcántara
990
70 kgCzechowski
990
75 kgSchär
990
75 kgBilsland
990
73 kgPettersson
990
75 kgHansen
990
74 kgVasile
990
66 kgDucreux
990
65 kg
Weight (KG) →
Result →
78
60
3
990
# | Rider | Weight (KG) |
---|---|---|
3 | LASA Miguel María | 68 |
6 | DUCHEMIN Marcel | 60 |
7 | PETTERSSON Gösta | 75 |
8 | MORTENSEN Leif | 70 |
10 | ZOETEMELK Joop | 68 |
11 | PARENTEAU Jean-Pierre | 68 |
990 | DEN HERTOG Fedor | 76 |
990 | MAGIERA Jan | 78 |
990 | JOLLY Brian | 76 |
990 | HANUSIK Zygmunt | 74 |
990 | ROLLINSON Dave | 66 |
990 | HUBSCHMID Bruno | 74 |
990 | ANDRESEN Thorleif | 75 |
990 | BŁAWDZIN Andrzej | 69 |
990 | ALCÁNTARA Augustín | 70 |
990 | CZECHOWSKI Zenon | 75 |
990 | SCHÄR Hugo | 75 |
990 | BILSLAND William | 73 |
990 | PETTERSSON Sture | 75 |
990 | HANSEN Jørgen Emil | 74 |
990 | VASILE Teodor | 66 |
990 | DUCREUX Daniel | 65 |