Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 5
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Pardilla
1
65 kgClement
2
66 kgGesink
3
70 kgPauwels
4
65 kgDi Grégorio
5
67 kgMestre
6
58 kgKvachuk
7
68 kgBoasson Hagen
9
75 kgDueñas
10
61 kgStubbe
11
66 kgRoche
13
70 kgSonnery
14
60 kgDeignan
15
65 kgMandri
16
66 kgMonfort
18
66 kgKvasina
19
72 kgCardoso
20
56 kgNaibo
23
62 kgKozontchuk
29
75 kgJérôme
31
65 kgSprick
34
71 kg
1
65 kgClement
2
66 kgGesink
3
70 kgPauwels
4
65 kgDi Grégorio
5
67 kgMestre
6
58 kgKvachuk
7
68 kgBoasson Hagen
9
75 kgDueñas
10
61 kgStubbe
11
66 kgRoche
13
70 kgSonnery
14
60 kgDeignan
15
65 kgMandri
16
66 kgMonfort
18
66 kgKvasina
19
72 kgCardoso
20
56 kgNaibo
23
62 kgKozontchuk
29
75 kgJérôme
31
65 kgSprick
34
71 kg
Weight (KG) →
Result →
75
56
1
34
# | Rider | Weight (KG) |
---|---|---|
1 | PARDILLA Sergio | 65 |
2 | CLEMENT Stef | 66 |
3 | GESINK Robert | 70 |
4 | PAUWELS Serge | 65 |
5 | DI GRÉGORIO Rémy | 67 |
6 | MESTRE Ricardo | 58 |
7 | KVACHUK Oleksandr | 68 |
9 | BOASSON HAGEN Edvald | 75 |
10 | DUEÑAS Moisés | 61 |
11 | STUBBE Tom | 66 |
13 | ROCHE Nicolas | 70 |
14 | SONNERY Blaise | 60 |
15 | DEIGNAN Philip | 65 |
16 | MANDRI René | 66 |
18 | MONFORT Maxime | 66 |
19 | KVASINA Matija | 72 |
20 | CARDOSO André | 56 |
23 | NAIBO Carl | 62 |
29 | KOZONTCHUK Dmitry | 75 |
31 | JÉRÔME Vincent | 65 |
34 | SPRICK Matthieu | 71 |