Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 29
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Delage
1
70 kgMonnerais
2
70 kgMoinard
3
69 kgSprick
4
71 kgGesink
5
70 kgNaibo
6
62 kgPauwels
7
65 kgDueñas
8
61 kgClement
9
66 kgStubbe
10
66 kgLeezer
11
76 kgRousseau
13
70 kgHovelijnck
16
75 kgBoom
18
75 kgMondory
20
66 kgLadagnous
21
73 kgGudsell
22
77 kgJacobs
23
68 kg
1
70 kgMonnerais
2
70 kgMoinard
3
69 kgSprick
4
71 kgGesink
5
70 kgNaibo
6
62 kgPauwels
7
65 kgDueñas
8
61 kgClement
9
66 kgStubbe
10
66 kgLeezer
11
76 kgRousseau
13
70 kgHovelijnck
16
75 kgBoom
18
75 kgMondory
20
66 kgLadagnous
21
73 kgGudsell
22
77 kgJacobs
23
68 kg
Weight (KG) →
Result →
77
61
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | DELAGE Mickaël | 70 |
2 | MONNERAIS Cyrille | 70 |
3 | MOINARD Amaël | 69 |
4 | SPRICK Matthieu | 71 |
5 | GESINK Robert | 70 |
6 | NAIBO Carl | 62 |
7 | PAUWELS Serge | 65 |
8 | DUEÑAS Moisés | 61 |
9 | CLEMENT Stef | 66 |
10 | STUBBE Tom | 66 |
11 | LEEZER Tom | 76 |
13 | ROUSSEAU Nicolas | 70 |
16 | HOVELIJNCK Kurt | 75 |
18 | BOOM Lars | 75 |
20 | MONDORY Lloyd | 66 |
21 | LADAGNOUS Matthieu | 73 |
22 | GUDSELL Timothy | 77 |
23 | JACOBS Pieter | 68 |