Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 12
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Asgreen
1
75 kgHalvorsen
2
69 kgMorin
4
74 kgWood
5
72 kgBanaszek
6
75 kgDowney
7
74 kgMadouas
8
71 kgRiabushenko
9
61 kgHodeg
10
76 kgEenkhoorn
11
72 kgRusso
12
74 kgOliveira
13
66 kgvan den Berg
14
78 kgGarel
15
77 kgMüller
16
74 kgZimmermann
17
70 kgRohde
18
75 kgFoss
20
74 kgGuglielmi
21
66 kgOnodera
22
65 kgGamper
23
80 kg
1
75 kgHalvorsen
2
69 kgMorin
4
74 kgWood
5
72 kgBanaszek
6
75 kgDowney
7
74 kgMadouas
8
71 kgRiabushenko
9
61 kgHodeg
10
76 kgEenkhoorn
11
72 kgRusso
12
74 kgOliveira
13
66 kgvan den Berg
14
78 kgGarel
15
77 kgMüller
16
74 kgZimmermann
17
70 kgRohde
18
75 kgFoss
20
74 kgGuglielmi
21
66 kgOnodera
22
65 kgGamper
23
80 kg
Weight (KG) →
Result →
80
61
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | ASGREEN Kasper | 75 |
2 | HALVORSEN Kristoffer | 69 |
4 | MORIN Emmanuel | 74 |
5 | WOOD Oliver | 72 |
6 | BANASZEK Alan | 75 |
7 | DOWNEY Mark | 74 |
8 | MADOUAS Valentin | 71 |
9 | RIABUSHENKO Alexandr | 61 |
10 | HODEG Álvaro José | 76 |
11 | EENKHOORN Pascal | 72 |
12 | RUSSO Clément | 74 |
13 | OLIVEIRA Rui | 66 |
14 | VAN DEN BERG Julius | 78 |
15 | GAREL Adrien | 77 |
16 | MÜLLER Patrick | 74 |
17 | ZIMMERMANN Georg | 70 |
18 | ROHDE Leon | 75 |
20 | FOSS Tobias | 74 |
21 | GUGLIELMI Simon | 66 |
22 | ONODERA Rei | 65 |
23 | GAMPER Patrick | 80 |