Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Norsgaard
1
88 kgMärkl
2
70 kgHayter
3
70 kgHorvat
4
70 kgPidcock
5
58 kgBissegger
6
78 kgEekhoff
7
75 kgGroves
8
76 kgHoole
9
81 kgHernandez
10
74 kgSleen
11
65 kgJenner
12
64 kgBayer
13
71 kgHeiderscheid
15
73 kgPrice-Pejtersen
16
83 kgFinkšt
17
70 kgBrown
18
68 kgKelemen
19
70 kgVan Tricht
21
64 kg
1
88 kgMärkl
2
70 kgHayter
3
70 kgHorvat
4
70 kgPidcock
5
58 kgBissegger
6
78 kgEekhoff
7
75 kgGroves
8
76 kgHoole
9
81 kgHernandez
10
74 kgSleen
11
65 kgJenner
12
64 kgBayer
13
71 kgHeiderscheid
15
73 kgPrice-Pejtersen
16
83 kgFinkšt
17
70 kgBrown
18
68 kgKelemen
19
70 kgVan Tricht
21
64 kg
Weight (KG) →
Result →
88
58
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | NORSGAARD Mathias | 88 |
2 | MÄRKL Niklas | 70 |
3 | HAYTER Ethan | 70 |
4 | HORVAT Žiga | 70 |
5 | PIDCOCK Thomas | 58 |
6 | BISSEGGER Stefan | 78 |
7 | EEKHOFF Nils | 75 |
8 | GROVES Kaden | 76 |
9 | HOOLE Daan | 81 |
10 | HERNANDEZ Michael | 74 |
11 | SLEEN Torjus | 65 |
12 | JENNER Samuel | 64 |
13 | BAYER Tobias | 71 |
15 | HEIDERSCHEID Colin | 73 |
16 | PRICE-PEJTERSEN Johan | 83 |
17 | FINKŠT Tilen | 70 |
18 | BROWN Jim | 68 |
19 | KELEMEN Petr | 70 |
21 | VAN TRICHT Stan | 64 |