Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -17.7 * weight + 1296
This means that on average for every extra kilogram weight a rider loses -17.7 positions in the result.
Foldager
1
69 kgPickrell
2
72 kgTene
5
72 kgBettendorff
6
74 kgFrątczak
7
70 kgVan Mechelen
8
73 kgKogut
9
77 kgPomorski
10
76 kgBusatto
11
62 kgTurk
13
63 kgMurn
14
77 kgFredheim
15
72 kgJørgensen
16
68 kgDel Grosso
18
70 kgBlackmore
19
66 kgWalsh
21
80 kgSimmons
23
68 kgKovar
24
65 kgKadlec
27
61 kgKamada
991
58 kg
1
69 kgPickrell
2
72 kgTene
5
72 kgBettendorff
6
74 kgFrątczak
7
70 kgVan Mechelen
8
73 kgKogut
9
77 kgPomorski
10
76 kgBusatto
11
62 kgTurk
13
63 kgMurn
14
77 kgFredheim
15
72 kgJørgensen
16
68 kgDel Grosso
18
70 kgBlackmore
19
66 kgWalsh
21
80 kgSimmons
23
68 kgKovar
24
65 kgKadlec
27
61 kgKamada
991
58 kg
Weight (KG) →
Result →
80
58
1
991
# | Rider | Weight (KG) |
---|---|---|
1 | FOLDAGER Anders | 69 |
2 | PICKRELL Riley | 72 |
5 | TENE Rotem | 72 |
6 | BETTENDORFF Loïc | 74 |
7 | FRĄTCZAK Radosław | 70 |
8 | VAN MECHELEN Vlad | 73 |
9 | KOGUT Oded | 77 |
10 | POMORSKI Michał | 76 |
11 | BUSATTO Francesco | 62 |
13 | TURK Aljaž | 63 |
14 | MURN Boštjan | 77 |
15 | FREDHEIM Stian | 72 |
16 | JØRGENSEN Adam Holm | 68 |
18 | DEL GROSSO Tibor | 70 |
19 | BLACKMORE Joseph | 66 |
21 | WALSH Liam | 80 |
23 | SIMMONS Colby | 68 |
24 | KOVAR Stefan | 65 |
27 | KADLEC Milan | 61 |
991 | KAMADA Koki | 58 |