Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 64
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Cloarec
1
78 kgJoly
2
75 kgBonduel
3
74 kgMaes
4
68 kgVan Rysselberghe
7
78 kgMaes
8
70 kgGarnier
11
74 kgLe Goff
12
68 kgLouviot
13
62 kgBrugère
16
74 kgLe Drogo
16
69 kgLe Drogo
16
80 kgBisseron
16
80 kgSalazard
16
74 kgFavé
16
72 kgBernard
16
69 kgKraus
38
61 kgWauters
39
72 kg
1
78 kgJoly
2
75 kgBonduel
3
74 kgMaes
4
68 kgVan Rysselberghe
7
78 kgMaes
8
70 kgGarnier
11
74 kgLe Goff
12
68 kgLouviot
13
62 kgBrugère
16
74 kgLe Drogo
16
69 kgLe Drogo
16
80 kgBisseron
16
80 kgSalazard
16
74 kgFavé
16
72 kgBernard
16
69 kgKraus
38
61 kgWauters
39
72 kg
Weight (KG) →
Result →
80
61
1
39
# | Rider | Weight (KG) |
---|---|---|
1 | CLOAREC Pierre | 78 |
2 | JOLY Émile | 75 |
3 | BONDUEL Frans | 74 |
4 | MAES Romain | 68 |
7 | VAN RYSSELBERGHE Bernard | 78 |
8 | MAES Sylvère | 70 |
11 | GARNIER Henri | 74 |
12 | LE GOFF Yves | 68 |
13 | LOUVIOT Raymond | 62 |
16 | BRUGÈRE Robert | 74 |
16 | LE DROGO Paul | 69 |
16 | LE DROGO Ferdinand | 80 |
16 | BISSERON Roger | 80 |
16 | SALAZARD Vincent | 74 |
16 | FAVÉ François | 72 |
16 | BERNARD René | 69 |
38 | KRAUS Maurice | 61 |
39 | WAUTERS Jean | 72 |