Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Van Rysselberghe
1
78 kgCloarec
4
78 kgLe Drogo
5
80 kgLouviot
6
62 kgLe Drogo
7
69 kgMaes
8
70 kgMaes
9
68 kgBonduel
10
74 kgJoly
10
75 kgGarnier
10
74 kgSalazard
10
74 kgLe Goff
10
68 kgKraus
10
61 kgBisseron
10
80 kgFavé
31
72 kgWauters
32
72 kgBrugère
34
74 kgBernard
35
69 kg
1
78 kgCloarec
4
78 kgLe Drogo
5
80 kgLouviot
6
62 kgLe Drogo
7
69 kgMaes
8
70 kgMaes
9
68 kgBonduel
10
74 kgJoly
10
75 kgGarnier
10
74 kgSalazard
10
74 kgLe Goff
10
68 kgKraus
10
61 kgBisseron
10
80 kgFavé
31
72 kgWauters
32
72 kgBrugère
34
74 kgBernard
35
69 kg
Weight (KG) →
Result →
80
61
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | VAN RYSSELBERGHE Bernard | 78 |
4 | CLOAREC Pierre | 78 |
5 | LE DROGO Ferdinand | 80 |
6 | LOUVIOT Raymond | 62 |
7 | LE DROGO Paul | 69 |
8 | MAES Sylvère | 70 |
9 | MAES Romain | 68 |
10 | BONDUEL Frans | 74 |
10 | JOLY Émile | 75 |
10 | GARNIER Henri | 74 |
10 | SALAZARD Vincent | 74 |
10 | LE GOFF Yves | 68 |
10 | KRAUS Maurice | 61 |
10 | BISSERON Roger | 80 |
31 | FAVÉ François | 72 |
32 | WAUTERS Jean | 72 |
34 | BRUGÈRE Robert | 74 |
35 | BERNARD René | 69 |