Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 36
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Tanneveau
1
66 kgvan Schendel
3
72 kgBraeckeveldt
4
64 kgGoasmat
5
60 kgDecroix
6
68 kgRossi
7
76 kgVanoverberghe
9
75 kgHubatz
12
80 kgMarcaillou
15
70 kgFavé
18
72 kgLe Drogo
20
69 kgLe Goff
21
63 kgSalazard
26
74 kgTassin
27
70 kgLe Guével
28
70 kgDeforge
29
72 kgIgnat
30
75 kgRoyer
33
80 kg
1
66 kgvan Schendel
3
72 kgBraeckeveldt
4
64 kgGoasmat
5
60 kgDecroix
6
68 kgRossi
7
76 kgVanoverberghe
9
75 kgHubatz
12
80 kgMarcaillou
15
70 kgFavé
18
72 kgLe Drogo
20
69 kgLe Goff
21
63 kgSalazard
26
74 kgTassin
27
70 kgLe Guével
28
70 kgDeforge
29
72 kgIgnat
30
75 kgRoyer
33
80 kg
Weight (KG) →
Result →
80
60
1
33
# | Rider | Weight (KG) |
---|---|---|
1 | TANNEVEAU Robert | 66 |
3 | VAN SCHENDEL Albert | 72 |
4 | BRAECKEVELDT Adolphe | 64 |
5 | GOASMAT Jean-Marie | 60 |
6 | DECROIX Emile | 68 |
7 | ROSSI Giulio | 76 |
9 | VANOVERBERGHE Cyriel | 75 |
12 | HUBATZ Georges | 80 |
15 | MARCAILLOU Sylvain | 70 |
18 | FAVÉ François | 72 |
20 | LE DROGO Paul | 69 |
21 | LE GOFF Eugène | 63 |
26 | SALAZARD Vincent | 74 |
27 | TASSIN Eloi | 70 |
28 | LE GUÉVEL Lucien | 70 |
29 | DEFORGE André | 72 |
30 | IGNAT Émile | 75 |
33 | ROYER Rémy | 80 |