Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 34
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Townsend
2
73 kgBax
3
78 kgZingle
4
67 kgPithie
5
74 kgPidcock
7
57 kgBlouwe
9
71 kgŘepa
10
71 kgMaas
13
70 kgRüegg
14
66 kgNaudts
15
60 kgScott
16
73 kgde Vries
17
66 kgThalmann
18
61 kgWolf
19
85 kgMárquez
20
66 kgCoqueret
21
69 kgStedman
22
54 kgCulverwell
23
71 kgJaime
24
70 kgGermani
25
62 kgStüssi
26
68 kgChristensen
28
63 kgHuby
30
56 kgBouts
31
72 kgBlikra
33
75 kg
2
73 kgBax
3
78 kgZingle
4
67 kgPithie
5
74 kgPidcock
7
57 kgBlouwe
9
71 kgŘepa
10
71 kgMaas
13
70 kgRüegg
14
66 kgNaudts
15
60 kgScott
16
73 kgde Vries
17
66 kgThalmann
18
61 kgWolf
19
85 kgMárquez
20
66 kgCoqueret
21
69 kgStedman
22
54 kgCulverwell
23
71 kgJaime
24
70 kgGermani
25
62 kgStüssi
26
68 kgChristensen
28
63 kgHuby
30
56 kgBouts
31
72 kgBlikra
33
75 kg
Weight (KG) →
Result →
85
54
2
33
# | Rider | Weight (KG) |
---|---|---|
2 | TOWNSEND Rory | 73 |
3 | BAX Sjoerd | 78 |
4 | ZINGLE Axel | 67 |
5 | PITHIE Laurence | 74 |
7 | PIDCOCK Joseph | 57 |
9 | BLOUWE Louis | 71 |
10 | ŘEPA Vojtěch | 71 |
13 | MAAS Jan | 70 |
14 | RÜEGG Lukas | 66 |
15 | NAUDTS Thomas | 60 |
16 | SCOTT Robert | 73 |
17 | DE VRIES Hartthijs | 66 |
18 | THALMANN Roland | 61 |
19 | WOLF Justin | 85 |
20 | MÁRQUEZ Martí | 66 |
21 | COQUERET Louis | 69 |
22 | STEDMAN Maximilian | 54 |
23 | CULVERWELL Sam | 71 |
24 | JAIME Álex | 70 |
25 | GERMANI Lorenzo | 62 |
26 | STÜSSI Colin | 68 |
28 | CHRISTENSEN Ryan | 63 |
30 | HUBY Antoine | 56 |
31 | BOUTS Jens | 72 |
33 | BLIKRA Erlend | 75 |