Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 24
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Pithie
2
74 kgBlouwe
4
71 kgMacleod
5
57 kgMeens
7
62 kgHuby
8
56 kgNaudts
9
60 kgGarcía Pierna
10
58 kgPaleni
12
65 kgJuneau
13
67 kgLeclainche
16
65 kgPenhoët
17
64 kgDesal
20
76 kgCulverwell
21
71 kgGermani
22
62 kgUrianstad Bugge
23
61 kgVollmer
24
67 kgNavarro
26
60 kgŘepa
29
71 kgCoqueret
30
69 kgBroex
32
75 kgSaver
33
76 kg
2
74 kgBlouwe
4
71 kgMacleod
5
57 kgMeens
7
62 kgHuby
8
56 kgNaudts
9
60 kgGarcía Pierna
10
58 kgPaleni
12
65 kgJuneau
13
67 kgLeclainche
16
65 kgPenhoët
17
64 kgDesal
20
76 kgCulverwell
21
71 kgGermani
22
62 kgUrianstad Bugge
23
61 kgVollmer
24
67 kgNavarro
26
60 kgŘepa
29
71 kgCoqueret
30
69 kgBroex
32
75 kgSaver
33
76 kg
Weight (KG) →
Result →
76
56
2
33
# | Rider | Weight (KG) |
---|---|---|
2 | PITHIE Laurence | 74 |
4 | BLOUWE Louis | 71 |
5 | MACLEOD Callum | 57 |
7 | MEENS Johan | 62 |
8 | HUBY Antoine | 56 |
9 | NAUDTS Thomas | 60 |
10 | GARCÍA PIERNA Carlos | 58 |
12 | PALENI Enzo | 65 |
13 | JUNEAU Francis | 67 |
16 | LECLAINCHE Gwen | 65 |
17 | PENHOËT Paul | 64 |
20 | DESAL Ceriel | 76 |
21 | CULVERWELL Sam | 71 |
22 | GERMANI Lorenzo | 62 |
23 | URIANSTAD BUGGE Martin | 61 |
24 | VOLLMER Andrew | 67 |
26 | NAVARRO Gauthier | 60 |
29 | ŘEPA Vojtěch | 71 |
30 | COQUERET Louis | 69 |
32 | BROEX Victor | 75 |
33 | SAVER Kasper | 76 |