Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 14
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Scott
1
73 kgBostock
2
69 kgErmenault
4
75 kgDauphin
5
70 kgVitzthum
6
70 kgDinham
7
63 kgLe Berre
9
68 kgMahoudo
10
61 kgTeggart
11
63 kgDuckert
12
68 kgLe Huitouze
13
71 kgVogel
15
80 kgPaleni
17
65 kgWirtgen
18
63 kgScott
19
68 kgWood
20
72 kgKuhn
22
69 kgQuarterman
23
75 kgPerry
27
71 kgGeorge
29
68 kgOram
30
68 kgSheehan
32
69 kg
1
73 kgBostock
2
69 kgErmenault
4
75 kgDauphin
5
70 kgVitzthum
6
70 kgDinham
7
63 kgLe Berre
9
68 kgMahoudo
10
61 kgTeggart
11
63 kgDuckert
12
68 kgLe Huitouze
13
71 kgVogel
15
80 kgPaleni
17
65 kgWirtgen
18
63 kgScott
19
68 kgWood
20
72 kgKuhn
22
69 kgQuarterman
23
75 kgPerry
27
71 kgGeorge
29
68 kgOram
30
68 kgSheehan
32
69 kg
Weight (KG) →
Result →
80
61
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | SCOTT Robert | 73 |
2 | BOSTOCK Matthew | 69 |
4 | ERMENAULT Corentin | 75 |
5 | DAUPHIN Florian | 70 |
6 | VITZTHUM Simon | 70 |
7 | DINHAM Matthew | 63 |
9 | LE BERRE Mathis | 68 |
10 | MAHOUDO Nolann | 61 |
11 | TEGGART Matthew | 63 |
12 | DUCKERT Roman | 68 |
13 | LE HUITOUZE Eddy | 71 |
15 | VOGEL Alex | 80 |
17 | PALENI Enzo | 65 |
18 | WIRTGEN Luc | 63 |
19 | SCOTT Jacob | 68 |
20 | WOOD Oliver | 72 |
22 | KUHN Kevin | 69 |
23 | QUARTERMAN Charlie | 75 |
27 | PERRY Benjamin | 71 |
29 | GEORGE Dylan | 68 |
30 | ORAM James | 68 |
32 | SHEEHAN Riley | 69 |