Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 35
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Paleni
1
65 kgTeggart
3
63 kgErmenault
5
75 kgPerry
7
71 kgLe Berre
8
68 kgBatt
9
76 kgBerhe
10
58 kgScott
11
73 kgGarosio
14
58 kgLe Huitouze
15
71 kgWhelan
16
64 kgBostock
18
69 kgVitzthum
20
70 kgQuarterman
21
75 kgDinham
22
63 kgvan Engelen
23
51 kgKuhn
24
69 kgRouland
26
55 kg
1
65 kgTeggart
3
63 kgErmenault
5
75 kgPerry
7
71 kgLe Berre
8
68 kgBatt
9
76 kgBerhe
10
58 kgScott
11
73 kgGarosio
14
58 kgLe Huitouze
15
71 kgWhelan
16
64 kgBostock
18
69 kgVitzthum
20
70 kgQuarterman
21
75 kgDinham
22
63 kgvan Engelen
23
51 kgKuhn
24
69 kgRouland
26
55 kg
Weight (KG) →
Result →
76
51
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | PALENI Enzo | 65 |
3 | TEGGART Matthew | 63 |
5 | ERMENAULT Corentin | 75 |
7 | PERRY Benjamin | 71 |
8 | LE BERRE Mathis | 68 |
9 | BATT Ethan | 76 |
10 | BERHE Welay Hagos | 58 |
11 | SCOTT Robert | 73 |
14 | GAROSIO Andrea | 58 |
15 | LE HUITOUZE Eddy | 71 |
16 | WHELAN James | 64 |
18 | BOSTOCK Matthew | 69 |
20 | VITZTHUM Simon | 70 |
21 | QUARTERMAN Charlie | 75 |
22 | DINHAM Matthew | 63 |
23 | VAN ENGELEN Adne | 51 |
24 | KUHN Kevin | 69 |
26 | ROULAND Louis | 55 |