Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 39
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Rouland
1
55 kgMüller
4
64 kgVandenbulcke
6
61 kgCamrda
9
63 kgBénéteau
11
58 kgBangert
16
66 kgJovanoski
17
68 kgDevroute
18
71 kgBuck-Gramcko
19
76 kgDetalle
20
63 kgSenicourt
21
64 kgSchmidt
24
78 kgBriese
27
66 kgHeremans
28
68 kgMuhoza
30
62 kgJacques
31
67 kgWalton
32
68 kgGathemann
37
62 kgAbma
41
86 kgRogora
42
65 kgHeinrich
43
76 kg
1
55 kgMüller
4
64 kgVandenbulcke
6
61 kgCamrda
9
63 kgBénéteau
11
58 kgBangert
16
66 kgJovanoski
17
68 kgDevroute
18
71 kgBuck-Gramcko
19
76 kgDetalle
20
63 kgSenicourt
21
64 kgSchmidt
24
78 kgBriese
27
66 kgHeremans
28
68 kgMuhoza
30
62 kgJacques
31
67 kgWalton
32
68 kgGathemann
37
62 kgAbma
41
86 kgRogora
42
65 kgHeinrich
43
76 kg
Weight (KG) →
Result →
86
55
1
43
# | Rider | Weight (KG) |
---|---|---|
1 | ROULAND Louis | 55 |
4 | MÜLLER Tobias | 64 |
6 | VANDENBULCKE Alex | 61 |
9 | CAMRDA Karel | 63 |
11 | BÉNÉTEAU Lucas | 58 |
16 | BANGERT Nick | 66 |
17 | JOVANOSKI Dimitar | 68 |
18 | DEVROUTE Corentin | 71 |
19 | BUCK-GRAMCKO Tobias | 76 |
20 | DETALLE Noah | 63 |
21 | SENICOURT Kylian | 64 |
24 | SCHMIDT Jakob | 78 |
27 | BRIESE Max | 66 |
28 | HEREMANS Joppe | 68 |
30 | MUHOZA Eric | 62 |
31 | JACQUES Lucas | 67 |
32 | WALTON Jonas | 68 |
37 | GATHEMANN Albert | 62 |
41 | ABMA Elmar | 86 |
42 | ROGORA Kiya | 65 |
43 | HEINRICH Nicolas | 76 |