Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 27
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Peron
1
70 kgMüller
2
64 kgBezza
3
76 kgVan Gucht
4
72 kgHavik
5
66 kgMeens
7
62 kgDina
9
67 kgVerwilt
10
76 kgGeens
11
78 kgFinkšt
12
70 kgLeclainche
13
65 kgĐurić
14
79 kgPeter
15
63 kgAvoine
19
70 kgScott
20
73 kgMattheis
21
65 kgBostock
22
69 kgBurnett
29
73 kgvan Schip
30
84 kgDonnenwirth
34
63 kgHočevar
35
57 kgBuck-Gramcko
36
76 kgHeremans
37
68 kgRogora
38
65 kg
1
70 kgMüller
2
64 kgBezza
3
76 kgVan Gucht
4
72 kgHavik
5
66 kgMeens
7
62 kgDina
9
67 kgVerwilt
10
76 kgGeens
11
78 kgFinkšt
12
70 kgLeclainche
13
65 kgĐurić
14
79 kgPeter
15
63 kgAvoine
19
70 kgScott
20
73 kgMattheis
21
65 kgBostock
22
69 kgBurnett
29
73 kgvan Schip
30
84 kgDonnenwirth
34
63 kgHočevar
35
57 kgBuck-Gramcko
36
76 kgHeremans
37
68 kgRogora
38
65 kg
Weight (KG) →
Result →
84
57
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | PERON Andrea | 70 |
2 | MÜLLER Tobias | 64 |
3 | BEZZA Quentin | 76 |
4 | VAN GUCHT Sten | 72 |
5 | HAVIK Yoeri | 66 |
7 | MEENS Johan | 62 |
9 | DINA Márton | 67 |
10 | VERWILT Mauro | 76 |
11 | GEENS Jonas | 78 |
12 | FINKŠT Tilen | 70 |
13 | LECLAINCHE Gwen | 65 |
14 | ĐURIĆ Đorđe | 79 |
15 | PETER Jannis | 63 |
19 | AVOINE Kévin | 70 |
20 | SCOTT Robert | 73 |
21 | MATTHEIS Oliver | 65 |
22 | BOSTOCK Matthew | 69 |
29 | BURNETT Josh | 73 |
30 | VAN SCHIP Jan-Willem | 84 |
34 | DONNENWIRTH Tom | 63 |
35 | HOČEVAR Kristjan | 57 |
36 | BUCK-GRAMCKO Tobias | 76 |
37 | HEREMANS Joppe | 68 |
38 | ROGORA Kiya | 65 |