Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Ronhaar
1
60 kgSierra
2
70 kgvan Schip
6
84 kgGeorge
7
78 kgDevroute
8
71 kgMüller
10
64 kgBlum
12
68 kgDe Moyer
15
69 kgPutz
17
62 kgVan Asbroeck
18
55 kgGaribbo
19
57 kgPlamondon
20
72 kgWillems
23
67 kgWalsh
24
80 kgLauryssen
25
67 kgBezza
28
76 kgHaest
30
70 kgGuerin
32
64 kgDelacroix
35
59 kgPaquet
37
60 kgGrozev
39
61 kg
1
60 kgSierra
2
70 kgvan Schip
6
84 kgGeorge
7
78 kgDevroute
8
71 kgMüller
10
64 kgBlum
12
68 kgDe Moyer
15
69 kgPutz
17
62 kgVan Asbroeck
18
55 kgGaribbo
19
57 kgPlamondon
20
72 kgWillems
23
67 kgWalsh
24
80 kgLauryssen
25
67 kgBezza
28
76 kgHaest
30
70 kgGuerin
32
64 kgDelacroix
35
59 kgPaquet
37
60 kgGrozev
39
61 kg
Weight (KG) →
Result →
84
55
1
39
# | Rider | Weight (KG) |
---|---|---|
1 | RONHAAR Pim | 60 |
2 | SIERRA Juan David | 70 |
6 | VAN SCHIP Jan-Willem | 84 |
7 | GEORGE Alfred | 78 |
8 | DEVROUTE Corentin | 71 |
10 | MÜLLER Tobias | 64 |
12 | BLUM Elia | 68 |
15 | DE MOYER Kenay | 69 |
17 | PUTZ Sebastian | 62 |
18 | VAN ASBROECK Maarten | 55 |
19 | GARIBBO Nicolò | 57 |
20 | PLAMONDON Joel | 72 |
23 | WILLEMS Thimo | 67 |
24 | WALSH Liam | 80 |
25 | LAURYSSEN Yorben | 67 |
28 | BEZZA Quentin | 76 |
30 | HAEST Jasper | 70 |
32 | GUERIN Alexis | 64 |
35 | DELACROIX Tristan | 59 |
37 | PAQUET Tom | 60 |
39 | GROZEV Gabriel | 61 |